
Reformulations in Mathematical
Programming

Leo Liberti

LIX, École Polytechnique, France

ReAlOpt Seminar, Oct. 2008 – p. 1

Reformulations in Mathematical
Programming: Definitions

ReAlOpt Seminar, Oct. 2008 – p. 2

Mathematical Programming

Mathematical programs consist of sets of parameters,
variables, objective functions, constraints

The objective functions are mathematical expressions in
terms of parameters and variables, together with an
optimization direction

The constraints are relations between mathematical
expressions in terms of parameters and variables

All such entities can also be expressed in terms of
indices , which must be quantified over specified sets

ReAlOpt Seminar, Oct. 2008 – p. 3

The Language

Consider an alphabet L including numbers,
mathematical operators (+,−,×,÷, ↑,

∑

,
∏

, log, exp,∀),
brackets, and symbols denoting parameters and
variables

Given a sequence of elements of L, is it a well-formed state-
ment of a mathematical program?

I.e. , we treat Mathematical Programming (MP) as a
language, whose semantic purpose is to describe a set
of points in a Euclidean space (the optima)

One possible grammar of the MP language is specified
in the appendix of the AMPL book

ReAlOpt Seminar, Oct. 2008 – p. 4

Main motivation

Given an optimization problem, many different MP
formulations can describe its solution set

The performances of solution algorithms depend on the
MP formulation

Given an optimization problem and a solution algorithm,
what is the MP formulation yielding the best performance?

How do we pass from one formulation to another that keeps some
(all) of the mathematical properties of the old formulation?

ReAlOpt Seminar, Oct. 2008 – p. 5

Reformulations: Existing definitions
“Q is a reformulation of P ” : what does it mean?

Definition in Mathematical Programming Glossary :
Obtaining a new formulation Q of a problem P that is in some sense
better, but equivalent to a given formulation. Trouble: vague.

Definition by H. Sherali [private communication] :
bijection between feasible sets, objective function of Q is a
monotonic univariate function of that of P . Trouble: feasible sets
bijection: condition is too restrictive

Definition by P. Hansen [Audet et al., JOTA 1997] : P,Q

opt. problems; given an instance p of P and q of Q and an optimal
solution y∗ of q, Q is a reformulation of P if an optimal solution x∗

of p can be computed from y∗ within a polynomial amount of time.
Trouble: only maintains optimality, requires
polynomial-time transformation

ReAlOpt Seminar, Oct. 2008 – p. 6

Storing MP formulations
Mathematical expressions as n-ary expression trees

3
∑

i=1

xiyi − log(x1/y3)

−

+

×

x1 y1

×

x2 y2

×

x3 y3

log

/

x1 y3

A formulation P is a 7-tuple (P,V, E ,O, C,B, T) =(parameters,
variables, expression trees, objective functions, constraints, bounds
on variables, variable types)

Objectives are encoded as pairs (d, f) where d ∈ {−1, 1} is the
optimization direction and f is the function being optimized

Constraints are encoded as triplets c ≡ (e, s, b) (e ∈ E , s ∈ {≤,≥, =},
b ∈ R)

F(P) = feasible set, L(P) = local optima, G(P) = global optima

ReAlOpt Seminar, Oct. 2008 – p. 7

Auxiliary problems

If problems P,Q are related by a computable function f
through the relation f(P,Q) = 0, Q is an auxiliary problem
with respect to P .

Opt-reformulations (or exact reformulations): preserve all
optimality properties

Narrowings : preserve some optimality properties

Relaxations : provide bounds to an objective function
value towards its optimization direction

Approximations : formulation Q depending on a
parameter k such that “ lim

k→∞
Q(k)” is an

opt-reformulation, narrowing or relaxation

ReAlOpt Seminar, Oct. 2008 – p. 8

Opt-reformulations
P

Q

F

F
LL

GG

φ

φ|L

φ|G

Main idea: if we find an optimum of Q, we can map it back to
the same type of optimum of P , and for all optima of P ,

there is a corresponding optimum in Q.

ReAlOpt Seminar, Oct. 2008 – p. 9

Narrowings
P

Q

F

F

G

G

φ

φ|G

Main idea: if we find a global optimum of Q, we can map it
back to a global optimum of P . There may be optima of P

without a corresponding optimum in Q.

ReAlOpt Seminar, Oct. 2008 – p. 10

Relaxations

A problem Q is a relaxation of P if: (a) F(P) ⊆ F(Q) and
(b) for all (f, d) ∈ O(P), (f̄ , d̄) ∈ O(Q) and x ∈ F(P) we
have d̄f̄(x) ≥ df(x)

Relaxations guarantee the bound of all objectives over all the
feasible region

A problem Q is a weak relaxation of P if there are:
(d, f) ∈ O(P), (d̄, f̄) ∈ O(P), x∗ ∈ G(P), y∗ ∈ G(Q)

such that d̄f̄(y∗) ≥ df(x∗)

Weak relaxations identify order relations between optima of
single objective pairs

ReAlOpt Seminar, Oct. 2008 – p. 11

Approximations

Q is an approximation of P if there exist: (a) an auxiliary
problem Q∗ of P ; (b) a sequence {Qk} of problems;
(c) an integer k′ > 0; such that:

1. Q = Qk′

2. ∀f∗ ∈ O(Q∗) there is a sequence of functions
fk ∈ O(Qk) converging uniformly to f∗;

3. ∀c∗ = (e∗, s∗, b∗) ∈ C(Q∗) there is a sequence of
constraints ck = (ek, sk, bk) ∈ C(Qk) such that ek

converges uniformly to e∗, sk = s∗ for all k, and bk

converges to b∗.

There can be approximations to opt-reformulations, narrowings,
relaxations

ReAlOpt Seminar, Oct. 2008 – p. 12

Composition laws
Opt-reformulation, narrowing, relaxation, approximation
are all transitive relations, so they can be chained

An approximation of any reformulation chain is an
approximation

A reformulation chain involving opt-reformulations,
narrowings, relaxations is a relaxation

A reformulation chain involving opt-reformulations and
narrowings is a narrowing

A reformulation chain involving opt-reformulations only is an
opt-reformulation

opt-reformulations narrowings relaxations approximations

ReAlOpt Seminar, Oct. 2008 – p. 13

Research programme

Identify a library of reformulations that can be carried
out automatically (by a computer) — under way

Implement data structures for holding MP formulations
as well as algorithms for changing their structures —
under way

Create a language for combining elementary
reformulations into complex (possibly conditional)
reformulations, according to the composition laws
above — to do

Create a heuristic method for finding out the best
reformulation given an optimization problem and a
solution algorithm — to do

ReAlOpt Seminar, Oct. 2008 – p. 14

Research team

Myself, obviously

One full-time senior researcher (Pierre Hansen, funded
by Digiteo)

Two full-time postdocs (F. Tarissan, funded by FP6
Morphex EU project; and S. Cafieri, funded by the ANR
“ARS” project)

Some part-time researchers (F. Messine, Toulouse;
L. Létocart, Paris 13)

A number of external collaborators (C. D’Ambrosio,
P. Janes, S. Perron, N. Mladenović, F. Plastria, J. Ninin
and others)

ReAlOpt Seminar, Oct. 2008 – p. 15

Reformulations in Mathematical
Programming: Symmetry

ReAlOpt Seminar, Oct. 2008 – p. 16

The setting

Most common solution algorithm for finding global
optima: Branch-and-Bound (BB for MILPs, sBB for
MINLPs)

BB (implicit enumeration): provides a certificate of
optimality in the linear case, and of ε-approximation in
the nonlinear case

If the problem has symmetries : many BB nodes will
contain (symmetric) optimal solutions⇒ pruning will occur
rarely⇒ BB converges slowly

Need a reformulation which is guaranteed to keep at least
one global optimum (but hopefully excludes a lot of
symmetric optima): a narrowing

ReAlOpt Seminar, Oct. 2008 – p. 17

Motivating example
Consider an instance P :

min x11 +x12 +x13 +x21 +x22 +x23

x11 +x12 +x13 ≥ 1

x21 +x22 +x23 ≥ 1

x11 +x21 ≥ 1

x12 +x22 ≥ 1

x13 +x23 ≥ 1

of the covering prob. min1x : ∀i
∑

j xij ≥ 1 ∧ ∀j
∑

i xij ≥ 1

The set of solutions is G(P) =

{(0, 1, 1, 1, 0, 0), (1, 0, 0, 0, 1, 1), (0, 0, 1, 1, 1, 0), (1, 1, 0, 0, 0, 1), (1, 0, 1, 0, 1, 0), (0, 1, 0, 1, 0, 1)}

G∗ = stab(G(P), Sn) is the solution group (column
permutations keeping G(P) fixed)

ReAlOpt Seminar, Oct. 2008 – p. 18

Symmetries
For the above instance, G∗ is
〈(2, 3)(5, 6), (1, 2)(4, 5), (1, 4)(2, 5)(3, 6)〉 ∼= D12

gap> S := [[0,1,1,1,0,0],[0,1,0,1,0,1],[0,0,1,1,1,0],

[1,1,0,0,0,1],[1,0,0,0,1,1],[1,0,1,0,1,0]];

G:=MatrixAutomorphisms(S); StructureDescription(G);

Group([(2,3)(5,6), (1,2)(4,5), (1,4)(2,5)(3,6)]); "D12"

For all x∗ ∈ G(P), G∗x∗ = G(P)⇒ ∃ only 1 orbit
∃ only one solution in G(P) (modulo symmetries)
gap> Orbit(G,S[1],Permuted);

[[0,1,1,1,0,0],[1,1,0,0,0,1],[1,0,1,0,1,0],

[1,0,0,0,1,1],[0,0,1,1,1,0],[0,1,0,1,0,1]]

gap> Orbit(G,S[2],Permuted);

[[0,1,0,1,0,1],[1,0,0,0,1,1],[0,0,1,1,1,0],

[1,0,1,0,1,0],[0,1,1,1,0,0],[1,1,0,0,0,1]]

gap> Orbit(G,S[3],Permuted);

[[0,0,1,1,1,0],[0,1,0,1,0,1],[1,0,0,0,1,1],

[1,1,0,0,0,1],[1,0,1,0,1,0],[0,1,1,1,0,0]]

...

ReAlOpt Seminar, Oct. 2008 – p. 19

Symmetries
This is bad for Branch-and-Bound techniques: many branches will
contain (symmetric) optimal solutions and therefore will not be
pruned by bounding⇒ deep and large BB trees

-Inf

1.5 2

2 2

← BB tree for symmetric 6×9

covering inst. with G∗ = C2

BB tree using symmetry break-

ing constraints→

-Inf

2 2

If we knew G∗ in advance, we might add constraints eliminating
(some) symmetric solutions out of G(P)

Can we find G∗ (or a subgroup thereof) a priori?

What constraints provide a valid reformulation of P excluding symmetric
solutions of G(P)?

ReAlOpt Seminar, Oct. 2008 – p. 20

Symmetries and formulation
The cost vector cT = (1, 1, 1, 1, 1, 1) is fixed by all (column)
permutations in S6

The vector b = (1, 1, 1, 1, 1) is fixed by all (row) permutations in S5

Consider P ’s constraint matrix:

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

Let π ∈ S6 be a column permutation such that ∃ a row permutation
σ ∈ S5 with σ(Aπ) = A

Then permuting the variables/columns in P according to π does not
change the problem formulation

ReAlOpt Seminar, Oct. 2008 – p. 21

The problem group

For a MILP with c = 1n and b = 1m,

GP = {π ∈ Sn | ∃σ ∈ Sm (σAπ = A)} (1)

is called the problem group of P

In the example above, we get GP
∼= D12

∼= G∗

gap> A := [[1,1,1,0,0,0],[0,0,0,1,1,1],

[1,0,0,1,0,0],[0,1,0,0,1,0],[0,0,1,0,0,1]];

G:=MatrixAutomorphisms(A); StructureDescription(G);

Group([(1,4)(2,5)(3,6), (2,3)(5,6), (1,2)(4,5)]); "D12"

Thm.

For a covering/packing problem P , GP ≤ G∗.

Result can be extended to all MILPs [Margot: 2002,
2003 (Math. Prog.); 2007 (DO)]

ReAlOpt Seminar, Oct. 2008 – p. 22

Related results in MILP

Isomorphism pruning [Margot 02,03], involves addition of
linear inequalities of packing type locally to selected
nodes of the BB tree (as well as var. fixing)

Orbitopes [Kaibel et al. 07,08]: “polytopes modulo
symmetries” for Cn and Sn groups only

Fundamental domains [Friedman 07]: given a (discrete)
domain X and a group G acting on X, a fundamental
domain is a subset F of X such that GF = X
(determination of smallest FDs w.r.t. given ordering
vectors c)

Orbital branching [Ostrowski et al. 07,08] branching scheme
taking advantage of the problem group (yields fewer
branching disjunctions)

ReAlOpt Seminar, Oct. 2008 – p. 23

Related results in CP

Much more work in CP than in MILP

Definitions : Cohen et al., Symmetry Definitions for Constraint

Satisfaction Problems, CP 2005. Relations between
constraint and solution groups

Survey
F. Margot, Symmetry in Integer Linear Programming, to appear in
“50 Years of Integer Programming”, Springer.

ReAlOpt Seminar, Oct. 2008 – p. 24

My contributions

1. MILPs (COCOA08 paper):
A MILP-based method for finding subgroups of the
problem group
Some static symmetry-breaking constraints
(narrowing reformulation)

2. MINLPs (new material):
Definition of the problem group
Reduction to GRAPH ISOMORPHISM

Orbit-based static symmetry-breaking constraints
(narrowing reformulation)

ReAlOpt Seminar, Oct. 2008 – p. 25

Symmetries in MINLPs
Consider the following MINLP P :

min f(x)

g(x) ≤ 0

x ∈ X.

(2)

where X may contain integrality constraints on x

For a row permutation σ ∈ Sm and a column
permutation π ∈ Sn, we define σPπ as follows:

min f(xπ)

σg(xπ) ≤ 0

xπ ∈ X.

(3)

Define GP = {π ∈ Sn | ∃σ ∈ Sm (σPπ = P)}

ReAlOpt Seminar, Oct. 2008 – p. 26

Representingg(xπ)
In the linear case, writing Axπ is easy — how do we
deal with g(xπ)?
How do we decide whether gi(x) = gh(xπ) for i, h ≤ m?

Answer : consider the expression DAG representation of g

3
∑

i=1

xiyi − log(x4/y4)

List of expressions ≡
expression DAG sharing
variable leaf nodes

−

+

×

x1 y1

×

x2 y2

×

x3 y3

log

/

x4 y4

Every function g : R
n → R

m is represented by a DAG whose leaf nodes are

variables and constants and whose intermediate nodes are mathematical operators

Look for relationships between the DAGs representing
g(x) and σg(xπ)

ReAlOpt Seminar, Oct. 2008 – p. 27

Example

c0 : x6x7 + x8x9 = 1

c1 : x6x8 + x7x9 = 1

x6
6 x7

7 x8
8 x9

9

+0

×2 ×3

+1

×4 ×5

GDAG = set of automorphisms of expression DAG fixing: (a)
root node set having same constr. direction and
coeff. (constraint permutations) , (b) operators with same label
and rank and (c) leaf node set (variable permutations)
Dreadnaut version 2.4 (32 bits).

> n=10 g 2 3; 4 5; 6 7; 8 9; 6 8; 7 9. f=[0:1|2:5|6:9] x

(4 5)(6 7)(8 9) !variable permutations

(2 3)(6 8)(7 9) !operator permutations

(0 1)(2 4)(3 5)(7 8) !constraint permutation

GP is the projection of GDAG to variable indices
〈(6, 7)(8, 9), (6, 8)(7, 9), (7, 8)〉 ∼= D8

ReAlOpt Seminar, Oct. 2008 – p. 28

Node colors 1

Colors on the DAG nodes are used to identify those subsets of nodes
which can be permuted

1. Root nodes (i.e. constraints) can be permuted if they
have the same RHS

2. Operator nodes (including root nodes) can be permuted
if they have the same DAG rank and label

3. If an operator node is non-commutative, then the order
of the children node must be maintained

4. Constant nodes can be permuted if they have the same
DAG rank level and value

5. Variable nodes can be permuted if they have the same
bounds and integrality constraints

ReAlOpt Seminar, Oct. 2008 – p. 29

Node colors 2
Formalize by equivalence relations on sets : R =roots,

O =operators, C =constants, V =variables

Let V be the set of all nodes of the DAG; for all x, y ∈ V:

1. x ∼R y if x, y ∈ R ∧ RHS(x) = RHS(y) or x, y 6∈ R

2. x ∼O y if x, y ∈ O ∧ level(x) = level(y) ∧ label(x) =

label(y) ∧ (order(x) = order(y) if x, y noncommutative) or
x, y 6∈ O

3. x ∼C y if x, y ∈ C ∧ value(x) = value(y) ∧ level(x) = level(y) or
x, y 6∈ C

4. x ∼V y if x, y ∈ V ∧ limits(x) = limits(y) ∧ integer(x) = integer(y)

or x, y 6∈ V

Define an integral function color : V → N s.t. ∀ x, y ∈ V (color(x) =

color(y) iff x ∼R y ∧ x ∼O y ∧ x ∼C y ∧ x ∼V y)

color is itself an equivalence relation (call it∼) and partitions V in disjoint sets

V1, . . . , Vp
ReAlOpt Seminar, Oct. 2008 – p. 30

MINLP problem groups
Let P be a MINLP and D = (V ,A) be the DAG of P

Let GDAG be the group of automorphisms of D that fix
each class in V/ ∼

Define φ : GDAG → Sn by φ(π) =permutation on V (set of
variable nodes) induced by π; then
Thm.
φ is a group homomorphism and Imφ ∼= GP

Hence can find GP by computing Imφ

Although the complexity status (P/NP-complete) of the
GRAPH ISOMORPHISM problem is currently unknown,
nauty is a practically efficient software for computing
GDAG

Also, MILPs are MINLPs! (can apply same methods)

ReAlOpt Seminar, Oct. 2008 – p. 31

Symmetries in the MIPLib3
Instance GP

air03.mod (C2)13

arki001.mod S38

enigma.mod C2

gen.mod (C2)2 × D8 × S6

fiber.mod C2

harp2.mod C2

mas74.mod C2 × C2

mas76.mod C2 × C2

misc03.mod S3

misc06.mod (C2)2 × (S3)2 × S4

misc07.mod S3

mitre.mod (C2)7

noswot.mod C2

nw04.mod C2

p0201.mod C2

p0282.mod (C2)3 × (S3)3

p0548.mod (C2)7

p2756.mod (C2)32

qiu.mod C2 × S4

rgn.mod S5

rout.mod S5

stein27.mod ((C3)3 ⋉ PSL(3, 3)) ⋉ C2

swath.mod S79

vpm1.mod S48

vpm2.mod (S3)2 × S4 × S5

Instance Error

mkc.mod RAM (36 gens)

seymour.mod RAM (78 gens)

All others: GP = {e}

All instances have been

pre-solved by AMPL

ReAlOpt Seminar, Oct. 2008 – p. 32

Symmetries in the MIPLib2003
Instance GP

arki001.mod S48

fiber.mod C2

glass4.mod C2

mas74.mod C2 × C2

mas76.mod C2 × C2

misc07.mod S3

mzzv11.mod (C2)155

mzzv42z.mod (C2)110

noswot.mod C2

opt1217.mod C2

p2756.mod (C2)32

protfold.mod (C2)2

qiu.mod C2 × S4

rout.mod S5

timtab1.mod C2

timtab2.mod C2

Instance Error

mkc.mod RAM (36 gens)

seymour.mod RAM (78 gens)

swath.mod RAM (922 gens)

atlanta-ip CPU time

dano3mip CPU time

mod011.mod CPU time

sp97ar.mod CPU time

t1717.mod CPU time

All others: GP = {e}

AMPL presolver disabled

ReAlOpt Seminar, Oct. 2008 – p. 33

Symmetries in the MINLPLib
Instance GP

cecil 13.mod (C2)9

elf.mod S3

gastrans.mod C2

gear.mod D8

gear2.mod D8

gear3.mod D8

gear4.mod D8

hmittelman.mod C2

lop97icx.mod (C2)7 × S762

nuclear14.mod S6

nuclear24.mod S6

nuclear25.mod S5

nuclear49.mod S7

nuclearva.mod S3

nuclearvb.mod S3

nuclearvc.mod S3

nuclearvd.mod S3

nuclearve.mod S3

nuclearvf.mod S3

nvs09.mod S10

product.mod S50

risk2b.mod (C2 × S3 × S6 × S13)3

super2.mod (C2)9 × (S3)2

super3.mod (C2)9 × (S3)2

synheat.mod S4

Instance Error

qap.mod CPU time

qapw.mod CPU time

All others: GP = {e}

All instances have been

pre-solved by AMPL

ReAlOpt Seminar, Oct. 2008 – p. 34

Breaking symmetries
Defn.

Given a permutation π ≤ Sn acting on the component indices
of the vectors in a given set X ⊆ R

n, the constraints g(x) ≤
0 (that is, {g1(x) ≤ 0, . . . , gq(x) ≤ 0}) are symmetry breaking

constraints (SBCs) with respect to π and X if there is y ∈ X
such that g(yπ) ≤ 0.

X
y π yπ

g(y) 6≤ 0 g(yπ) ≤ 0
Defn.

Given a group G, g(x) ≤ 0 are SBCs w.r.t G and X is there
is y ∈ XG such that g(y) ≤ 0.

Usually yπ is an optimum, but not all optima satisfy the SBCs

ReAlOpt Seminar, Oct. 2008 – p. 35

SBCs and narrowings

Adjoining SBCs to an MP formulation provides a valid narrowing
Thm.

If g(x) ≤ 0 are SBCs for any subgroup G of GP and G(P),
then the problem Q obtained by adjoining g(x) ≤ 0 to the
constraints of P is a narrowing of P .

Notation : g[B](x) ≤ 0 if g(x) only involve variable indices in B

Conditions allowing adjunctions of many SBCs
Thm.

Let ω, θ ⊆ {1, . . . , n} be such that ω ∩ θ = ∅. Consider ρ, σ ∈
GP , and let g[ω](x) ≤ 0 be SBCs w.r.t. ρ,G(P) and h[θ](x) ≤
0 be SBCs w.r.t. σ,G(P). If ρ[ω], σ[θ] ∈ GP [ω ∪ θ] then the
system of constraints c(x) ≤ 0 consisting of g[ω](x) ≤ 0 and
h[θ](x) ≤ 0 is an SBC system for ρσ.

ReAlOpt Seminar, Oct. 2008 – p. 36

SBCs from orbits
Let Ω be the set of nontrivial orbits of the regular action of GP on {1, . . . , n}

Thm.
Let ω ∈ Ω. The constraints

∀j ∈ ω r {min ω} xmin ω ≤ xj . (4)

are SBCs with respect to GP .

Notation : G[ω] is the transitive constituent of G on its orbit ω

Thm.

Provided GP [ω] = Sym(ω), the following constraints:

∀ j ∈ ω− xj ≤ xj+ (5)

are SBCs with respect to GP .

ReAlOpt Seminar, Oct. 2008 – p. 37

Automatic SBC generation
1. Transform MINLP from AMPL input format into a DAG

representation (ROSE)

2. Compute node colors according to relation ∼ defined
above (ROSE)

3. Compute GDAG (nauty)

4. Compute Imφ (gap)

5. Compute nontrivial orbits Ω (gap)

6. Generate SBCs (4) or (5) according to the structure of
GP [ω], where ω is the longest orbit in Ω (gap)

7. If conditions hold, try to generate compatible SBCs from
other orbits (gap)

ROSE=Reformulation/Optimization Software Engine; nauty=Graph
Isomorphism software; gap=Group Theory software; data flow provided
by Unix scripts

ReAlOpt Seminar, Oct. 2008 – p. 38

Tests
Computed group structures for 669 instances in MIPLib3 ∪
MIPLib2003 ∪ GlobalLib ∪ MINLPLib

Out of 18% instances with nontrivial groups, 74 could be solved by
BB algorithms (CPLEX for MILPs; Couenne, BARON for (MI)NLPs)

Narrowing1: only use (4) for longest orbit

Narrowing2: try to generate as many and as tight SBCs as possible

Test 1: over all instances

Test 2: over a selection of 6 difficult instances with long BB runs

Original problem Narrowing1 Narrowing2

T. CPU
Best
gap Nodes CPU

Best
gap Nodes CPU

Best
gap Nodes

1 157263
69

2.26E4% 21.44M 152338
70

2.26E4% 14.23M 153470
72

2.26E4% 15.72M

2 815018
5

242.88% 12.26M 888089
5

219.14% 14.63M 786406
5

217.05% 11.28M

ReAlOpt Seminar, Oct. 2008 – p. 39

The KNP group
KISSING NUMBER PROBLEM (decision version): Given integers D, N > 1,
can N unit spheres be adjacent to a given unit sphere in R

d?

Formulation:
maxx,α α

∀i ≤ N ||xi||
2 = 1

∀i < j ≤ N ||xi − xj ||
2 ≥ α

α ∈ [0, 1],∀i ≤ N xi ∈ [−1, 1]D
2 1 0 -1 -2210-1-2

-2

-1

0

1

2

If α ≥ 1, answer YES, otherwise NO

The group Aut(G(P)) has infinite (uncountable) cardinality: each feasible solution

can be rotated by any angle in R
D; however, the problem group GP is finite

(permutations of spheres and/or dimensions)

Conjecture (formulated by software): GP
∼= SD

Rewrite constraint: ||xi − xj ||
2 =

∑

k≤D(xik − xjk)2 =
∑

k≤D(x2

ik + x2

jk − 2xikxjk) = 2(D −
∑

k≤D xikxjk)

Conjecture becomes : GP
∼= SD × SN (eventually proved correct)

ReAlOpt Seminar, Oct. 2008 – p. 40

The end

Thank you

ReAlOpt Seminar, Oct. 2008 – p. 41

	Reformulations in Mathematical Programming: Definitions
	Mathematical Programming
	The Language
	Main motivation
	Reformulations: Existing definitions
	Storing MP formulations
	Auxiliary problems
	Opt-reformulations
	Narrowings
	Relaxations
	Approximations
	Composition laws
	Research programme
	Research team
	Reformulations in Mathematical Programming: Symmetry
	The setting
	Motivating example
	Symmetries
	Symmetries
	Symmetries and formulation
	The problem group
	Related results in MILP
	Related results in CP
	My contributions
	Symmetries in MINLPs
	Representing $g(xpi)$
	Example
	Node colors 1
	Node colors 2
	MINLP problem groups
	Symmetries in the MIPLib3
	Symmetries in the MIPLib2003
	Symmetries in the MINLPLib
	Breaking symmetries
	SBCs and narrowings
	SBCs from orbits
	Automatic SBC generation
	Tests
	The KNP group
	The end

