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We consider the so-calledendor-managed inventoi)Y MI) system in
supply chain. :
« The supplier monitors the inventory and decides the
replenishment policy of each retailer
 The supplier acts as a central decision maker wilees an
Integrated inventory-routing problem.

The advantage of a VMI policy with respect to thaditional retailer
managed inventorgolicies lies in a more efficient resource utitina
 The supplier can reduce its inventories while naammhg the same
level of service, or can increase the level of isernand reduce the
transportation cost through a more uniform utii@at of the
transportation capacities
« The retailers can devote fewer resources to maongottheir
Inventories and to placing orders, and have thaagiiee that no
stockout will occur
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We consider two replenishment strategies

 The order-up to level (OU):
0 Each retailer defines a minimum and a maximum itwgrievel
and can be visited several times during the plaphorizon.
o the supplier monitors the Iinventory of each retaiEnd
guarantees that no stockout will occur.
0 Every time a retailer is visited, the quantity deted is such that
the maximum inventory level is reached.

 The maximum level strategy (ML) :

o Instead of imposing that every time a retailer isited, the
guantity delivered is such that the maximum levahegentor is
reached, the only constraint on the shipping gtiamti that it
must be not greater than the maximum inventoryl leve
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Inventory-routing is gaining in popularity, bothom a practical
standpoint and as a research area. This class atlepns is rather
difficult to solve.

Some surveys

Bertazzi, L., Speranza, M.G., Savelsbergh, M.V2F0]),
Inventory Routing,
in: Vehicle routing, Golden, B., Raghavan, R., Wdsi (eds.), to appear.

Campbell, A.M., Clarke, L., Kleywegt, A., SavelgheM.W.P. (1998),
The Inventory Routing Problem,
in: Fleet Management and Logistics, Crainic, TlGaporte, G. (eds.), 95-113, Kluwer, Boston.

Federgruen, A., Simchi—Levi, D. (1995),

Analysis of Vehicle Routing and Inventory—Routingiems,

in: Handbooks in Operations Research and Managefaance, Ball, M.O., Magnanti, T.L.,
Monma, C.L., Nemhauser, G.L. (eds.), Vol. 8, 29%B;3Yorth—Holland.

We concentrate on a simplified version of the peablinvolving a single vehicle. This
will hopefully serve as a basis for the understagdand resolution of more realistic
cases.
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Plan of the talh

Part |
An Branch-and-Cut algorithm
Archetti, Bertazzi, Laporte, Speranza
Transportation Science 41 (2007)

Part Il
A Hybrid Heuristic
Archetti, Bertazzi, Hertz, Speranza
Submitted for publication in March 2009 (3 weeks)ag
(combination of a tabu search with the solutioividi® models)
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Part |

Problem description

We consider a logistic network in which a prodscshipped from a common supplier O
to a set M={1,2,...,n} of retailers over a time hamzH.

At each discrete timeir={1,2,....,H}
= a product quantityyfis produced or made available at the supplier
" a quantity &is consumed at retailerlM.

A starting inventory level B at the supplier is giver{ﬂBs the inventory level at the
supplier at period t.

Each retailer s defines a maximum inventory leveahdd has a given starting inventory
level Ii<Us.. |Ist IS the inventory level at retailer s at period t.

If retailer s is visited at time t, then the quantky shipped to s depends on the
replenishment policy

= OU policy : % is the difference betweens@nd the current inventory levg| of s

= ML policy : the quantity ¥ can take any non-negative value that does noatadhe
capacity U
6
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Costs
The inventory cost is charged both at the supplner at the retailers

= Denoting 3 the unit inventory cost at the supplier, and pyh® inventory level at the supplier
at time t, the total inventory cost at the suppber

> heB,

T’

Where T'=TI{H+1}. The time H+1 is included in the computation order to take into
account the consequences of the operations perdoaitene H.

= Denoting R the unit inventory cost of retailer s, the totedlentory cost at retailer s is
> hdg
tOT"

Shipments from the supplier to the retailers capdréormed at any timélfl by a vehicle of
capacity C. Each vehicle route visits visits alarers that are served at the same time

= The transportation;ccost from i to j is known.

= Denoting M’=M{0} and ly; | the binary variable equal to 1 if j immediateljidavs i in the
route traveled aime t, and O otherwise, the total transportatiost cis

2. 2.CiYi
i, jOM" tOT
j<i
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Obijective function to be minimized

ZhOBt +ZZ hslst+ Z Zcijyitj

toT” {7 M i, jOM" 0T
j<i

Constraints

1. Inventory definition at the supplier

B =B tlpa ~ szt—l T
SV

(where %=ro=0)

2. Stockout constraint at the supplier

B, = ) X taT
<M
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3. Inventory definition at the retailers

lg1 = lgiq + Xgie1 — i1
(where £5=0)

4. Stockout constraint at the retailers

I 20

5. Order-up-to level constraints
Xg 2UZg — g
Xg S U¢ — 1y

Xg = Uz

@v ECOLE

POLYTECHNIQUE
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sIM tdT

M tOT

sSIM T
sSIM T
sSIM T

Zs 1S a binary variable that equals 1 if retailer s isasgat time t, and O otherwise.
ZolS a binary variable that equals | if the supplier dgbvsomething at time t.



GERAD g%ﬁ%ﬁh%us

MONTREAL

6. Capacity constraints

D xqsC T
M

7. Routing constraints

if at least one retailer is visited at time t, them tbute traveled at time t has to
“visit” the supplier. g equals 1 in such a case, and 0 otherwise

D xg<Czy taT
M

if deliveries are made at time t, then the route travatdime t has to contain
one arc entering every vertex i on the route and onleavig every i.

DVt DY =2z, oM tOT
oM jome
J<i >

Subtours elimination constraints

10



GERAD
8. Nonnegativity and integrality constraints
Xg 20
yj 0{01}
Yio 0{01,2}
z;, 0{01}

Additional valid inequalities

O.If sis not served in the times t-k,t-k+1,...

time t-k is=> Z
j=0

g 2 @ Zzst—j)Z st-j

St=j

sUUM tOT k=0,...,t-

@v ECOLE

POLYTECHNIQUE
MONTREAL

oM  tOT
ijOMj<i  tOT
ioM T
oM tOT

t, thenitheentory level §« at s at

1

11
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10. This constraint is valid only for the OU policy. If t&ihe last time retailer s

t-1
was visited before time t, thegeUs— > 1
=tk
-1
lq 2 UgZgy = D 1y sOM tOT k=0,...,t-1

i=t—k

11. If retailer s is is visited at time t, then the supphas to be included in the route
traveled at time t

Zy < Zy, sLM tOT

12. If the supplier is the successor of retailer i in the rtnateeled at time t (i.e.,
Vio'=1 or 2), then i has to be visited at time t.

If retailer j is the successor of retailer i in the rowdweled at time t (i.e.,;}1),
then i has to be visited at time t.

yi, < 2z, iOM tOT
Yii < Z; i,jOM tOT

12
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An exact algorithm

Archetti, Bertazzi, Laporte and Speranza(Transportation Science 41 (2007)
have developed a Branch-and-Cut algorithm to solveribielem to optimality

= they consider all constraints and inequalities, pkt®e subtour elimination
constraints

= All valid inequalities are included in the root node.
= Branching occurs in priority on variablesand then on variableg'y
» The search is developed according to a best boundtietegy.

= An initial upper bound is obtained using a heurideveloped byBertazzi,
Paletta and SperanzgTransportation Science 36 (2002)

13
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Short description of the heuristic of Bertazzi et &

1. the retailers are ranked in non-decreasing order of thegevatanber of time

units needed to consume the quantity(dhd in non-increasing order of I case
of equality)

2. Inthe initialization phase, a feasible solutionasstructed by means of an
iterative procedure that inserts a retailer at eachibara

» When retailer s is considered, a set of delivery timeRtermined by a solving

a shortest-path problem on an acyclic network in whiary vertex is a
possible delivery time

» For each of the selected delivery times, the retalarserted in the route
traveled that day by applying the cheapest insediarion

3. Inthe second phase, the solution is improved itexiti

= At each iteration, a pair of retailers is removed andserird. If this reduces
the total cost, the solution is modified accordingly.

14
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Part |l

General description of the hybrid heuristic

Apply thelnitialization procedure to generate an initial solution s and,sgt-s.

While the number of iterations without improvement Qf:&s < Maxlterdo

= Apply the Move procedure to find the best solution s’ in the neighbood
N(s) of s.

= |f S’ is better thanyssithen

Apply thelmprovemenfprocedure to possibly improve s’ and sgis-s’.
= Set 8-S’

» If the number of iterations without improvement @f;3s a multiple of
Jumplterthen

Apply theJumpprocedure to modify the current solution s
End while.

15
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There are two parameters
= Maxlter to indicate when to stop
= Jumplter to indicate when to jump to a new region efdbarch space

There are four basic procedures
= |nitialization : it generates a starting solution
= Move : it generates the best neighbour s’ of s in N(s)
* Improvement it tries to improve gs by solving MIP problems
= Jump: it performs changes on s in order to jump to a nevomegf the search space

16
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Definition of the search space

A solution to the inventory routing problemfeaSikais

= there is no stockout at the supplier,

= there is no stockout at the retailers,

= the level of the inventory of each retailer is never gretlhan its maximum level
= there is no violation of the vehicle capacity constrai

The search space visited by the heuristic contaihgi@as which are not necessarily
feasible.

= there is no stockout at the retailers

= the level of the inventory of each retailer is never @redian its maximum level
= stockout at the supplier is permitted

= the vehicle capacity is possibly exceeded at same periods

| =4

Such solutions are calle@@dmissible

17
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The objective function to be minimized is the sum o
» the inventory and transportation costs,
» + two penalty terms related to infeasibility.

Penalty for a stockout a the supplier
Penalty for the violation of the vehicle capacity dosst
where, for a solution s,

= By(s) the inventory level at the supplier at time t
= Q(s) the total quantity delivered at time t

@r ECOLE

POLYTECHNIQUE
MONTREAL

BY max{0,-B,(s)}

toT"

a) max{0,Q, ¢) - C}

18
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Procedurenitialization

Each retailer is considered sequentially and the @glitimes are set as late as possible,
before a stockout situation occurs.

Such a solution is obviousdmissible but not necessarily feasible.

19
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Procedure Move

A neighbour s’ of s is obtained by adding and/or mmoving visits at some retailers.
These changes are performed as follows

Removal of a visit
When we remove a visit to retailer i at time t, we freshove retailer i from the vehicle
route at time t and its predecessor is linked toutssssor.
» In the case of the OU policy, the quantity deliver@ddt time t is transferred to the
following visit (if any). Such a removal is performed orflit creates no stockout at
customer i in order to keep the solution admissible

» For the ML policy,
if there is no stockout at i when removing the vibign nothing else is made;

otherwise the removal is performed only if the stockout at i banavoided by
Increasing the quantity delivered at the previoud yisany) to a value not larger
than the maximum capacity;..U

20
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Max Level

Min Level

Max Level

Min Level

Max Level

Min Level

Xy

X—y¢
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Jnsertion of a vigit
When we insert a visit to retailer i at time t, we fiasld retailer i to the vehicle route at
time t using the cheapest insertion method.
» In the case of the OU policy, the quantity delivered &t time t is equal to the
difference between;land |(s). The same quantity is removed from the next visit (if

any)
» For the ML policy, we compute the minimum value bedww
0 Ui - li(s)

o The residual capacity of the vehicle at time t

o The quantity available at the supplier at time t
If this minimum is zero, thenr Lnits (the demand at time t) are delivered.

In all cases, the case quantity is removed from thewigk (if any).

We consider two tabu lists,land L
= If retailer i is visited at time t in s but not in &ien the pair (i,t) is introduced in, L

and it is forbidden for some iterations to add delivane t at retailer |
= |f retailer i is visited at time t in s’ but not in $ien the pair (i,t) is introduced in L
and it is forbidden for some iterations to remove dejitene t at retailer |

22
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Construction of the neighbourhood N(s)
This is done in two steps
Step 1 : Construction of a set N'(s) of admissiblsolutions

N’(s) contains all solutions which can be obtained frodmy one of the following
simple changes:

 Removal of a visit at a retailer

* Insertion of a visit at a retailer

 Move of a visit at a retailer i from time t to time t' (8@t i is not yet visited at
time t)

« Swap of a visit to retailer i a time t with a visitretailer j at time t’ (so that i is
not visited at time t" and j is not visited at ti)e

23
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Step 2 : Construction of N(s) by improving the soltions in N’(s).

Consider any solution s’ in N'(s).

e If hi>hy it might be interesting to remove visits to i sint@s will strictly
decrease the total inventory cost and the transportatist without creating
any stockout at the supplier.

e Suppose there is a visit to | at time t. {D>C or B(s’)<0, then the removal
of a visit to i at time t reduces the penalty comprd the objective function.

If such a change induces an admissible solution witktrict decrease of the
objective function, then the move is performed:

For the ML policy, we also test ifi¥hy. In such a case it might be interesting to
increase the quantity delivered to i at time t. Werease the delivery as much as
possible without exceeding the maximum inventoryelaf/such a change gives a
solution with a strict decrease of the objective fluorcti

24
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Procedurelmprovement

We solve two MIPs

1. Given a solution s, we try to improve it by assignnogites to different time
periods, without adding new retailers in the routes.

2. Given a solution s, we do not change the time assigo each vehicle route,
whereas the removal of insertion of customers into rasitakowed.

25
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First MIP

The only possible changes are the removal of custdinmgnsa route and the assignment
of routes to different times. We denote R the set of souts.

Data
A, = transportation saving if 1 is removed from route r. (jthe predecessor with the

successor)
o; =1 if i belongs to route r, O otherwise.

Variables
 w;,=1ifiis removed from route r, O otherwise

e z:=11if11s visited at time t, O otherwise
* d; =1 if route r is assigned to time t, O otherwise

26
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Objective:

Minimize

Constraints

T tT'iCM

B =B +lpa ~ szt—l

M
B, = szt
<M

lg = g1 + X1 — T2
Xgt 2 Uszsi - Isi

Xg S Us _|s1

D B+ > hilig- > > Ajwy,

IOMrOR

tUT’

tUT

M
SM
SM
SHLY
tT

+ Nonnegativity and integrality constraints

@v ECOLE
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(o’
tOT (OU)
(o

tOT (OU)
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+ A route can be assigned to at most one timegeri

Zdrt < rOR

There is at most one route at each time t

D dy <1 T

MR
A retailer can be visited at time t only if it is ¥exd by the route assigned at time t
Xt <U;j > 0y dy iOM tOT

R

A retailer cannot be visited at time t if it is currgntisited at time t but is removed
from this route.

Xy < U; (2=0; (dyg + W) iOM tOT 1OR

A retailer can be removed only from a route where itsgedl.
Wi _c,errt iOM rOR

28
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Second MIP

The only possible changes are the removal and rtbertion of retailers into routes,
whereas we do not change the time of each vehicle route.

Data
Ay = transportation saving if i is removed from the route at time

[ = insertion cost of retailer i into the route at time t (clesamsertion).
o =1 if i is visited at time tin s, O otherwise.

Variables

« wi;=1ifiis removed from the route at time t, O otherwise
e vi; = 1ifiisinserted into the route at time t, O otherwise

e z:=1if11s visited at time t, O otherwise

Objective:

Minimize Y hoBy+> > hilig- > > Apwig+ > > Ty

T tT'ioM IOM T ioMtaT

29
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Constraints

B =B +lpa ~ szt—l T
M

B, = ) xg taT

M
lgi = Igi + Xgi-1 ~ fs11 sIM T
X31 > U5231 - |51 g:”\/l tDT (OU)
Xg S U, — 1y s1M tUT
Xg S UgzZg 1M tOT (OU)
D xqsC taT
M

+ Nonnegativity and integrality constraints
A retailer cannot be inserted into a route that alreadis\hgm

A retailer cannot be removed from a route that does nothwmsit

A retailer can be visited at time t only if it is visited by tbate assigned at time t and
IS not removed from it, or if he is inserted into the routenas ti.
Xit < Ui (Git _Wit +Vi'[) IOM tdOT
30
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Remark

If more than one retailer is removed from a route or insefbedhle second MIP),
then the variation of the transportation cost in the olwedtinction is only an
estimation of the real gain or loss induced by such a moiitirca

31
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Theorem These two MIPs correspond to NP-hard problems
Proof

Knapsack probleml First MIP

Partition probleni] Second MIP

@r ECOLE
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ProcedureJump

Retailers are moved from time periods where they tgpically visited to time
periods where they are typically not visited.

More precisely, as long as there exists a triplet (i,t,t") $hah

0 i is a retailer visited at time t since at least Jumplterdrations

0 1 was never visited at time # t during the last Jumplter / 2 iterations

o the move of the visit to | from time t to time t" does not ceemstockout at i
we take such a triplet at random and perform the move.

When no more changes of this kind can be performvedapply the second MIP and
consider the resulting solution as the new current salutio

33
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Computational experiments

Small instances
 n=5 to 50 customers
e H=3 and 6
160 instances

Comparison of the exact algorithm with the hybrid reuristic

« Average error of our hybrid heuristic Maximal error of aybrid heuristic
OU policy : 0.08% OU policy : 1.84%
ML policy : 0.05% ML policy : 1.17%

* The heuristic of Bertazzi, Paletta and Speranza (OU policy)
Average error . 2.86% Maximal error :  14.52%

« For H=3 with the ML policy, only one instance is rsalived to optimality by the
hybrid heuristic

e For H=3, the hybrid heuristic find@8% optimal solutions
For H=6, the success ratebi2.5%

34
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Bigger instances

* Up to 200 retailers
« H=3 and 6

60 instances

OU policy

POLYTECHNIQUE
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* The heuristic of Bertazzi, Paletta and Speranza always lage than 3 minutes
* We have run our algorithms for 5 minutes, 10 minutes, 30 miaungd hour

The solution produced by each algorithm is compaiedhe best solution
obtained during our experiments

BPS

Hybrid 5 min
Hybrid 10 min
Hybrid 30 min
Hybrid 1 hour

Average deviation

2.74%
1.64%
1.33%
0.72%
0.07%

Worst deviation

10.3%
7.44%
6.07%
5.82%
2.37%

35



GERAD

ML policy

Hybrid 5 min
Hybrid 10 min
Hybrid 30 min
Hybrid 1 hour

Average deviation
0.34%
0.25%
0.04%
0.00%

@r ECOLE
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Worst deviation
2,35%
2.35%
0.78%
0.00%

36
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Queébec
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Que bec
gtiong ?
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