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We consider the so-called vendor-managed inventory (VMI) system in 
supply chain. : 

• The supplier monitors the inventory and decides the 
replenishment policy of each retailer 

• The supplier acts as a central decision maker who solves an 
integrated inventory-routing problem. 

 
The advantage of a VMI policy with respect to the traditional retailer 
managed inventory policies lies in a more efficient resource utilization 

• The supplier can reduce its inventories while maintaining the same 
level of service, or can increase the level of service and reduce the 
transportation cost through a more uniform utilization of the 
transportation capacities 

• The retailers can devote fewer resources to monitoring their 
inventories and to placing orders, and have the guarantee that no 
stockout will occur 
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We consider two replenishment strategies 
 

• The order-up to level (OU):  
o Each retailer defines a minimum and a maximum inventory level 

and can be visited several times during the planning horizon. 
o the supplier monitors the inventory of each retailer and 

guarantees that no stockout will occur.  
o Every time a retailer is visited, the quantity delivered is such that 

the maximum inventory level is reached. 
 

• The maximum level strategy (ML) : 
o Instead of imposing that every time a retailer is visited, the 

quantity delivered is such that the maximum level of inventor is 
reached, the only constraint on the shipping quantity is that it 
must be not greater than the maximum inventory level 

 
 



 

4 

Inventory-routing is gaining in popularity, both from a practical 
standpoint and as a research area. This class of problems is rather 
difficult to solve. 
 
Some surveys 
 

Bertazzi, L., Speranza, M.G., Savelsbergh, M.W.P. (2008),  
Inventory Routing,  
in: Vehicle routing, Golden, B., Raghavan, R., Wasil, E. (eds.), to appear. 
 

Campbell, A.M., Clarke, L., Kleywegt, A., Savelsbergh, M.W.P. (1998),  
The Inventory Routing Problem,  
in: Fleet Management and Logistics, Crainic, T.G., Laporte, G. (eds.), 95–113, Kluwer, Boston. 
 

Federgruen, A., Simchi–Levi, D. (1995),  
Analysis of Vehicle Routing and Inventory–Routing Problems,  
in: Handbooks in Operations Research and Management Science, Ball, M.O., Magnanti, T.L., 
Monma, C.L., Nemhauser, G.L. (eds.), Vol. 8, 297–373, North–Holland. 

 
We concentrate on a simplified version of the problem involving a single vehicle. This 
will hopefully serve as a basis for the understanding and resolution of more realistic 
cases. 
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Plan of the talkPlan of the talkPlan of the talkPlan of the talk    
 
Part I 

An Branch-and-Cut algorithm 
Archetti, Bertazzi, Laporte, Speranza 

Transportation Science 41 (2007) 
 
 
 

Part II 
A Hybrid Heuristic 

Archetti, Bertazzi, Hertz, Speranza 
Submitted for publication in March 2009 (3 weeks ago) 

(combination of a tabu search with the solution of MIP models) 
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Part I 
 

Problem description 
 

We consider a logistic network in which a product is shipped from a common supplier 0 
to a set M={1,2,…,n} of retailers over a time horizon H. 

At each discrete time t∈T={1,2,….,H}  
� a product quantity r0t is produced or made available at the supplier 
� a quantity rst is consumed at retailer s∈M. 

A starting inventory level B0, at the supplier is given. Bt is the inventory level at the 
supplier at period t. 

Each retailer s defines a maximum inventory level Us and has a given starting inventory 
level Is0≤Us. Ist is the inventory level at retailer s at period t. 

If retailer s is visited at time t, then the quantity xst shipped to s depends on the 
replenishment policy 

� OU policy : xst is the difference between Us and the current inventory level Ist of s 

� ML policy : the quantity xst can take any non-negative value that does not violate the 
capacity Us 
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Costs 
The inventory cost is charged both at the supplier and at the retailers 

� Denoting h0 the unit inventory cost at the supplier, and by Bt the inventory level at the supplier 
at time t, the total inventory cost at the supplier is 

∑
∈ 'Tt

t0Bh  

 Where T’=T∪{H+1}. The time H+1 is included in the computation in order to take into 
account the consequences of the operations performed at time H. 

� Denoting hs the unit inventory cost  of retailer s, the total inventory cost at retailer s is 

∑
∈ 'Tt

stsIh  

Shipments from the supplier to the retailers can be performed at any time t∈T by a vehicle of 
capacity C. Each vehicle route visits visits all retailers that are served at the same time 

� The transportation cij  cost from i to j is known. 

� Denoting M’=M∪{0} and yij
t the binary variable equal to 1 if j immediately follows i in the 

route traveled at time t, and 0 otherwise, the total transportation cost  is  

∑ ∑
<
∈ ∈
ij

'Mj,i Tt

t
ijij yc  



 

8 

Objective function to be minimized 

∑
∈ 'Tt

t0Bh +∑∑
∈ ∈'Tt

sts
Ms

Ih +∑ ∑
<
∈ ∈
ij

'Mj,i Tt

t
ijij yc  

 

 

Constraints 

  

1. Inventory definition at the supplier 

 ∑
∈

−−− −+=
Ms

1st1t01tt xrBB   t∈T’ 

 (where xs0=r00=0) 

 

2. Stockout constraint at the supplier 

 ∑
∈

≥
Ms

stt xB   t∈T 
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3. Inventory definition at the retailers 

 1st1st1stst rxII −−− −+=   s∈M  t∈T’ 

 (where rs0=0) 

 

4. Stockout constraint at the retailers 

 0I st ≥   s∈M  t∈T’ 

 

5. Order-up-to level constraints 

 ststsst IzUx −≥   s∈M  t∈T 

 stsst IUx −≤   s∈M  t∈T 

 stsst zUx ≤   s∈M  t∈T 

zst is a binary variable that equals 1 if retailer s is served at time t, and 0 otherwise. 
z0tis a binary variable that equals I if the supplier delivers something at time t. 
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6. Capacity constraints 

 Cx
Ms

st ≤∑
∈

  t∈T 

 

7. Routing constraints 

� if at least one retailer is visited at time t, then the route traveled at time  t has to 
“visit” the supplier. z0t equals 1 in such a case, and 0 otherwise 

 t0
Ms

st Czx ≤∑
∈

  t∈T 

� if deliveries are made at time t, then the route traveled at time t has to contain 
one arc entering every vertex i on the route and one arc leaving every i. 

 it

ij
'Mj

t
ji

ij
'Mj

t
ij z2yy =+∑∑

>
∈

<
∈

  i∈M’    t∈T 

� Subtours elimination constraints 
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8. Nonnegativity and integrality constraints 

 0xst ≥   i∈M    t∈T 

 }1,0{y t
ij ∈   i,j∈M j<i    t∈T 

 }2,1,0{y t
0i ∈   i ∈M    t∈T 

 }1,0{zit ∈   i ∈M’   t∈T 

 

Additional valid inequalities 
 

9. If s is not served in the times t-k,t-k+1,…,t, then the inventory level Ist-k at s at 

time t-k is ≥  ∑
=

−

k

0j
jstr  

 ∑∑
=

−
=

−− −≥
k

0j
jst

k

0j
jstkst r)z1(I  s∈M  t∈T  k=0,…,t-1 
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10. This constraint is valid only for the OU policy. If t-k is the last time retailer s 

was visited before time t, then Ist=Us ∑
−

−=

−
1t

ktj
sjr  

 ∑
−

−=
− −≥

1t

ktj
sjkstsst rzUI  s∈M  t∈T  k=0,…,t-1 

11. If retailer s is is visited at time t, then the supplier has to be included in the route 
traveled at time t 

 t0st zz ≤  s∈M  t∈T   

12. If the supplier is the successor of retailer i in the route traveled at time t (i.e., 
yi0

t=1 or 2), then i has to be visited at time t. 

 If retailer j is the successor of retailer i in the route traveled at time t (i.e., yij
t=1), 

then i has to be visited at time t. 

 it
t
0i z2y ≤  i∈M  t∈T   

 it
t
ij zy ≤  i,j∈M  t∈T   
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An exact algorithm An exact algorithm An exact algorithm An exact algorithm     
Archetti, Bertazzi, Laporte and Speranza (Transportation Science 41 (2007) 
have developed a Branch-and-Cut algorithm to solve the problem to optimality 
 

� they consider all constraints and inequalities, except the subtour elimination 
constraints  

� All valid inequalities are included in the root node. 
� Branching occurs in priority on variables zjt and then on variables yij

t. 
� The search is developed according to a best bound first strategy. 
� An initial upper bound is obtained using a heuristic developed by Bertazzi, 

Paletta and Speranza (Transportation Science 36 (2002) 
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Short description of the heuristic of Bertazzi et al. 
 

1. the retailers are ranked in non-decreasing order of the average number of time 
units needed to consume the quantity Us (and in non-increasing order of Us in case 
of equality) 

 
2. In the initialization phase, a feasible solution is constructed by means of an 

iterative procedure that inserts a retailer at each iteration 
� When retailer s is considered, a set of delivery times is determined by a solving 

a shortest-path problem on an acyclic network in which every vertex is a 
possible delivery time 

� For each of the selected delivery times, the retailer is inserted in the route 
traveled that day by applying the cheapest insertion criterion 

 
3. In the second phase, the solution is improved iteratively 

� At each iteration, a pair of retailers is removed and reinserted. If this reduces 
the total cost, the solution is modified accordingly. 
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Part II 
 

General description of the hybrid heuristic 
 
Apply the Initialization procedure to generate an initial solution s and set sbest←s. 
 
While the number of iterations without improvement of sbest is ≤ MaxIter do 

� Apply the Move procedure to find the best solution s’ in the neighbourhood 
N(s) of s. 

� If  s’ is better than sbest then 

Apply the Improvement procedure to possibly improve s’ and set sbest←s’. 

� Set s←s’ 

� If  the number of iterations without improvement of sbest is a multiple of 
JumpIter then  

Apply the Jump procedure to modify the current solution s 

End while. 
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There are two parameters 

� MaxIter to indicate when to stop 

� JumpIter to indicate when to jump to a new region of the search space 

 

There are four basic procedures 

� Initialization : it generates a starting solution 

� Move : it generates the best neighbour s’ of s in N(s) 

� Improvement : it tries to improve sbest by solving MIP problems 

� Jump : it performs changes on s in order to jump to a new regions of the search space 
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Definition of the search space 

A solution to the inventory routing problem is feasible is  

� there is no stockout at the supplier,  

� there is no stockout at the retailers,  

� the level of the inventory of each retailer is never greater than its maximum level  

� there is no violation of the vehicle capacity constraint 

 

The search space visited by the heuristic contains solutions which are not necessarily 
feasible. 

� there is no stockout at the retailers 

� the level of the inventory of each retailer is never greater than its maximum level  

� stockout at the supplier is permitted 

� the vehicle capacity is possibly exceeded at some time periods 

Such solutions are called admissible. 
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The objective function to be minimized is the sum of  
� the inventory and transportation costs,  
� + two penalty terms related to infeasibility.  

 

Penalty for a stockout a the supplier ∑
∈

−β
'Tt

t )}s(B,0max{  

Penalty for the violation of the vehicle capacity constraint   ∑
∈

−α
Tt

t }C)s(Q,0max{  

 
where, for a solution s, 
� Bt(s) the inventory level at the supplier at time t 
� Qt(s) the total quantity delivered at time t 
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Procedure Initialization 
 
Each retailer is considered sequentially and the delivery times are set as late as possible, 
before a stockout situation occurs.  
 
Such a solution is obviously admissible, but not necessarily feasible. 
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Procedure Move 
 
A neighbour s’ of s is obtained by adding and/or removing visits at some retailers. 
These changes are performed as follows 
 

Removal of a visit 
When we remove a visit to retailer i at time t, we first remove retailer i from the vehicle 
route at time t and its predecessor is linked to its successor. 
� In the case of the OU policy, the quantity delivered to i at time t is transferred to the 

following visit (if any). Such a removal is performed only if it creates no stockout at 
customer i in order to keep the solution admissible 

 
� For the ML policy,  

if  there is no stockout at i when removing the visit, then nothing else is made;  

otherwise, the removal is performed only if the stockout at i can be avoided by 
increasing the quantity delivered at the previous visit (if any) to a value not larger 
than the maximum capacity Ui. 
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Insertion of a visit 
When we insert a visit to retailer i at time t, we first add retailer i to the vehicle route at 
time t using the cheapest insertion method. 
� In the case of the OU policy, the quantity delivered to i at time t is equal to the 

difference between Ui and Iit(s). The same quantity is removed from the next visit (if 
any) 

� For the ML policy, we compute the minimum value between 
o Ui - Iit(s) 
o The residual capacity of the vehicle at time t 
o The quantity available at the supplier at time t 

If this minimum is zero, then rit units (the demand at time t) are delivered. 
In all cases, the case quantity is removed from the next visit (if any). 
 

We consider two tabu lists La and Lr 
� If retailer i is visited at time t in s but not in s’ then the pair (i,t) is introduced in La 

and it is forbidden for some iterations to add delivery time t at retailer i 
� If retailer i is visited at time t in s’ but not in s, then the pair (i,t) is introduced in Lr 

and it is forbidden for some iterations to remove delivery time t at retailer i 
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Construction of the neighbourhood N(s) 
 
This is done in two steps 
 
Step 1 : Construction of a set N’(s) of admissible solutions 
 
 N’(s) contains all solutions which can be obtained from s by one of the following 

simple changes: 
• Removal of a visit at a retailer 
• Insertion of a visit at a retailer 
• Move of a visit at a retailer i from time t to time t’ (so that i is not yet visited at 

time t’) 
• Swap of a visit to retailer i a time t with a visit to retailer j at time t’ (so that i is 

not visited at time t’ and j is not visited at time t) 
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Step 2 : Construction of N(s) by improving the solutions in N’(s).  
  

Consider any solution s’ in N’(s). 
• If hi>h0 it might be interesting to remove visits to i since this will strictly 

decrease the total inventory cost and the transportation cost without creating 
any stockout at the supplier. 

• Suppose there is a visit to i at time t. If Qt(s’)>C or Bt(s’)<0, then the removal 
of a visit to i at time t reduces the penalty component of the objective function. 

If such a change induces an admissible solution with a strict decrease of the 
objective function, then the move is performed: 

For the ML policy, we also test if hi>h0. In such a case it might be interesting to 
increase the quantity delivered to i at time t. We increase the delivery as much as 
possible without exceeding the maximum inventory level if such a change gives a 
solution with a strict decrease of the objective function. 
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Procedure Improvement 

We solve two MIPs 

1. Given a solution s, we try to improve it by assigning routes to different time 
periods, without adding new retailers in the routes.  

2. Given a solution s, we do not change the time assigned to each vehicle route, 
whereas the removal of insertion of customers into routes is allowed. 
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First MIP 
The only possible changes are the removal of customers from a route and the assignment 
of routes to different times. We denote R the set of routes in s. 

Data 
∆ir = transportation saving if i is removed from route r. (join the predecessor with the 
successor) 

σir =1 if i belongs to route r, 0 otherwise. 

 

Variables 
• wir = 1 if i is removed from route r, 0 otherwise 
• zit = 1 if i is visited at time t, 0 otherwise 
• drt =1 if route r is assigned to time t, 0 otherwise 
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Objective :  
Minimize  ∑

∈ 'Tt
t0Bh +∑∑

∈ ∈'Tt
iti

Mi

Ih -∑∑
∈ ∈

∆
Mi Rr

irir w  

 

Constraints 
 ∑

∈
−−− −+=

Ms
1st1t01tt xrBB   t∈T’ 

 ∑
∈

≥
Ms

stt xB   t∈T 

 1st1st1stst rxII −−− −+=   s∈M  t∈T’ 

 ststsst IzUx −≥   s∈M  t∈T  (OU) 

 stsst IUx −≤   s∈M  t∈T 

 stsst zUx ≤   s∈M  t∈T  (OU) 

 Cx
Ms

st ≤∑
∈

  t∈T 

 + Nonnegativity and integrality constraints 
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+ A route  can be assigned to at most one time period 

 1d
Tt

rt ≤∑
∈

  r∈R 

There is at most one route at each time t 

 1d
Rr

rt ≤∑
∈

  t∈T 

A retailer can be visited at time t only if it is visited by the route assigned at time t 

 ∑
∈

σ≤
Rr

rtiriit dUx   i∈M  t∈T 

A retailer cannot be visited at time t if it is currently visited at time t but is removed 
from this route. 

 ))wd(2(Ux irrtiriit +σ−≤   i∈M  t∈T   r∈R 

A retailer can be removed only from a route where it is visited. 

 ∑
∈

σ≤
Tt

rtirir dw   i∈M  r∈R 
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Second MIP 
The only possible changes are the removal and the insertion of retailers into routes, 
whereas we do not change the time of each vehicle route. 

Data 
∆it = transportation saving if i is removed from the route at time t.  

Γit = insertion cost of retailer i into the route at time t (cheapest insertion). 

σit =1 if i is visited at time t in s, 0 otherwise. 

 

Variables 
• wit = 1 if i is removed from the route at time t, 0 otherwise 
• vit = 1 if i is inserted into the route at time t, 0 otherwise 
• zit = 1 if i is visited at time t, 0 otherwise 
 
Objective :  

Minimize  ∑
∈ 'Tt

t0Bh +∑∑
∈ ∈'Tt

iti
Mi

Ih -∑∑
∈ ∈

∆
Mi Tt

itit w +∑∑
∈ ∈

Γ
Mi Tt

itit v  
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Constraints 
 ∑

∈
−−− −+=

Ms
1st1t01tt xrBB   t∈T’ 

 ∑
∈

≥
Ms

stt xB   t∈T 

 1st1st1stst rxII −−− −+=   s∈M  t∈T’ 

 ststsst IzUx −≥   s∈M  t∈T  (OU) 

 stsst IUx −≤   s∈M  t∈T 

 stsst zUx ≤   s∈M  t∈T  (OU) 

 Cx
Ms

st ≤∑
∈

  t∈T 

+ Nonnegativity and integrality constraints 
 

A retailer cannot be inserted into a route that already visits him 
 itit 1v σ−≤   i∈M   t∈T 

A retailer cannot be removed from a route that does not visit him 
 ititw σ≤   t∈T 

A retailer can be visited at time t only if it is visited by the route assigned at time t and 
is not removed from it, or if he is inserted into the route at time t. 
 )vw(Ux itititiit +−σ≤   i∈M  t∈T 
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Remark 

If more than one retailer is removed from a route or inserted (for the second MIP), 
then the variation of the transportation cost in the objective function is only an 
estimation of the real gain or loss induced by such a modification. 
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Theorem  These two MIPs correspond to NP-hard problems 

Proof 
 
Knapsack problem ∝ First MIP 

 

Partition problem ∝ Second MIP 
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Procedure Jump 

Retailers are moved from time periods where they are typically visited to time 
periods where they are typically not visited. 

More precisely, as long as there exists a triplet (i,t,t’) such that  

o i is a retailer visited at time t since at least JumpIter / 2 iterations 

o i was never visited at time t’ ≠ t during the last JumpIter / 2 iterations 

o the move of the visit to i from time t to time t’ does not create a stockout at i 

we take such a triplet at random and perform the move. 

 

When no more changes of this kind can be performed, we apply the second MIP and 
consider the resulting solution as the new current solution. 
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Computational experiments 
 

Small instances 
• n=5 to 50 customers 
• H=3 and 6 
160 instances 
 

Comparison of the exact algorithm with the hybrid heuristic 
• Average error of our hybrid heuristic  Maximal error of our hybrid heuristic 

OU policy :  0.08% OU policy :  1.84% 
ML policy :  0.05% ML policy :  1.17% 
 

• The heuristic of Bertazzi, Paletta and Speranza (OU policy) 
Average error :    2.86% Maximal error :     14.52% 

 

• For H=3 with the ML policy, only one instance is not solved to optimality by the 
hybrid heuristic 

 

• For H=3, the hybrid heuristic finds 88% optimal solutions 
For H=6, the success rate is 52.5% 
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Bigger instances 
• Up to 200 retailers 
• H=3 and 6 
60 instances 
 
OU policy 

• The heuristic of Bertazzi, Paletta and Speranza always takes less than 3 minutes 
• We have run our algorithms for 5 minutes, 10 minutes, 30 minutes and 1hour 

The solution produced by each algorithm is compared to the best solution 
obtained during our experiments 
 

 Average deviation Worst deviation 
BPS 2.74% 10.3% 
Hybrid 5 min 1.64% 7.44% 
Hybrid 10 min 1.33% 6.07% 
Hybrid 30 min 0.72% 5.82% 
Hybrid 1 hour 0.07% 2.37% 
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ML policy 
 

 Average deviation Worst deviation 
Hybrid 5 min 0.34% 2,35% 
Hybrid 10 min 0.25% 2.35% 
Hybrid 30 min 0.04% 0.78% 
Hybrid 1 hour 0.00% 0.00% 
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