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Definitions

Connected graph : G = (V , E ), n = |V |

µ(G ) = average distance among all pairs of vertices of G

=

P

v 6=w

d(v ,w)

n(n−1)
2

µ(G ) = 22
15 ≃ 1.47
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Definitions

Connected graph : G = (V , E ), G ′ ⊆ G , v ∈ V

σG ′(v) = sum of all distances from v to all other vertices in G ′

= transmission of v in G ′

=
∑

w∈V (G ′)

d(v , w)

v

σG (v) = 7
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Definitions

α(G ) = size of a maximum stable set in G

= stability number of G

α(G ) = 3
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Definitions

α2(G ) = size of a maximum induced bipartite subgraph in G

= 2-stability number of G

α2(G ) = 5

2 disjoint stable sets induce a bipartite graph =⇒ α2(G)
2 ≤ α(G )
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Conjecture 747

From ”Written on the Wall” (conjectures automatically generated
with the help of the Graffiti system, S. Fajtlowicz) :
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Conjecture 747

In our terms : µ(G ) ≤ α2(G)
2 ?

Fan Chung Theorem : µ(G ) ≤ α(G )
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F (G ) = size of a maximum induced forest in G .
= forest number of G

= |V |- minimum number of vertices needed to cover all cycles

F (G ) = 4

A forest is special bipartite graph =⇒ F (G ) ≤ α2(G )

Computing F (G ) is NP-hard
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F (G ) = size of a maximum induced forest in G .
= forest number of G

F (G ) = 4

A forest is a special bipartite graph =⇒ F (G ) ≤ α2(G )

Our theorem : µ(G ) ≤ F (G)
2

Corollary : µ(G ) ≤ α2(G)
2
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T1 : edge removal
T2 : kite creation
T3 : bridge shifting
T4 : vertex shifting
T5 : vertex removal
T6 : double-kite increasing

Our constructive proof :

G G’T(G) T’(T(G))

Each transformation T has the following two properties :

µ(T (G )) ≥ µ(G )

F (T (G )) = F (G )

The graph G ′ obtained at the end is very specific and verifies

µ(G ′) ≤
F (G ′)

2

⇒ µ(G ) ≤ µ(G ′) ≤
F (G ′)

2
=

F (G )

2
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T1 : edge removal
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T4 : vertex shifting
T5 : vertex removal
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Structure :

Input : G connected
Output : G ′ such that µ(G ) ≤ µ(G ′), F (G ′) = F (G ) and
|V (G ′)| = |V (G )|

1: Set G ′ = G

2: If T1 is applicable to G ′, set G ′ = T1(G
′) and go to 2

3: If T2 is applicable to G ′, set G ′ = T2(G
′) and go to 2

4: If T3 is applicable to G ′, set G ′ = T3(G
′) and go to 2

5: If T4 is applicable to G ′, set G ′ = T4(G
′) and go to 2

6: If T5 is applicable to G ′, set G ′ = T5(G
′) and go to 2

7: Set G ′ = T6(G
′) as many times as T5 has been applied.
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T1 : edge removal
T2 : kite creation
T3 : bridge shifting
T4 : vertex shifting
T5 : vertex removal
T6 : double-kite increasing

For T1, T2, T3, T4 and T6, we have :

µ(Ti (G )) > µ(G )

F (Ti (G )) = F (G )

Moreover,

µ(T5(G )) ≥ µ(G ) (there is a possible equality)

F (T5(G )) = F (G )

Since T6 is applied as often as T5, we conclude that :

If G ′ is not equal to G , then

µ(G ) < µ(G ′) ≤
F (G ′)

2
=

F (G )

2
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T1 : edge removal
T2 : kite creation
T3 : bridge shifting
T4 : vertex shifting
T5 : vertex removal
T6 : double-kite increasing

Claim : the graph obtained at the end of the algorithm is a
balanced double kite.

clique clique

Both cliques have the same (or almost the same) number of
vertices.
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T1 : edge removal
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T5 : vertex removal
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T1 : edge removal

An edge e such that F (G − e) > F (G ) is called critical.
An edge e such that G is connected and G − e is disconnected is
called a bridge.
Requirement : ∃ a non-critical edge e which is not a bridge.

e

T (G)1G

Property : if every edge is critical, then G is 2-(vertex-)connected.
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T1 : edge removal
T2 : kite creation
T3 : bridge shifting
T4 : vertex shifting
T5 : vertex removal
T6 : double-kite increasing

T2 : kite creation

Requirement : G contains a bridge (edge e such that G − e is not
connected).

G1

G1

T (G)2

G2

G

clique

Length of the path chosen so that F (T2(G )) = F (G ).

Size of the clique chosen so that |V (T2(G ))| = |V (G )|.

Limitation : only applicable to the smallest side of the bridge.
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T3 : bridge shifting

Requirement : G contains a bridge.

v

v

M

M

G1 G2

G1

T (G)3

G2

G

vM : vertex of G1 such that σG1(vM) = max
v∈G1

σG1(v).
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T1 : edge removal
T2 : kite creation
T3 : bridge shifting
T4 : vertex shifting
T5 : vertex removal
T6 : double-kite increasing

T4 : vertex shifting

Requirements :
G contains a bridge with end point vM in G1

G2 is a kite

|V (G1)| > |V (G2)|

vM has at least three neighbors

G1

G1
− v

G2 clique

G

T (G)4

v

2
G’

clique

v

v

M

M
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T1 : edge removal
T2 : kite creation
T3 : bridge shifting
T4 : vertex shifting
T5 : vertex removal
T6 : double-kite increasing

T5 : vertex removal

Requirement : there is at most one non-critical edge of G , and it is
a pending edge.

T (G)5G

v

vM
v

M

v : “central” vertex of G .
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T1 : edge removal
T2 : kite creation
T3 : bridge shifting
T4 : vertex shifting
T5 : vertex removal
T6 : double-kite increasing

T6 : double kite increasing

Requirement : G is a double kite.

T (G)6

cliqueclique

clique

G

clique
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An example

µ(G ) = 2.14

F (G ) = 8
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An example

T1

e

µ(G ) = 2.14 µ(G ′) = 2.15
F (G ) = 8 F (G ′) = 8

Hansen, Hertz, Kilani, Marcotte, Schindl Average distance and maximum induced forest



Definitions and the conjecture 747
Our theorem

The proof : 6 graph transformations
An example

Related results

An example

T5

µ(G ′) = 2.15 µ(G ′) = 2.51
F (G ′) = 8 F (G ′) = 8
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An example

T2

µ(G ′) = 2.51 µ(G ′) = 2.87
F (G ′) = 8 F (G ′) = 8
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An example

T3

µ(G ′) = 2.87 µ(G ′) = 2.96
F (G ′) = 8 F (G ′) = 8
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An example

T4

µ(G ′) = 2.96 µ(G ′) = 3.24
F (G ′) = 8 F (G ′) = 8
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An example

T1

e

µ(G ′) = 3.24 µ(G ′) = 3.38
F (G ′) = 8 F (G ′) = 8
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An example

T6

µ(G ′) = 3.38 µ(G ′) = 3.49
F (G ′) = 8 F (G ′) = 8
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An example

G G’

µ(G ) ≤ µ(G ′) = 3.49 ≤ 4 =
F (G ′)

2
=

F (G )

2
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Characterization of extremal graphs
A stronger conjecture

Extremal graphs

The graphs G = (V , E ) with |V | = n vertices such that F (G ) = k

and maximum µ(G ) are

the balanced double kite if k ≥ 4

the clique Kn if k ≤ 2

the balanced double kite or some other graphs like if
k = 3
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A stronger conjecture

LF (G )=size of a maximum induced linear forest in G .

LF (G ) = 3

µ( ) = 1.5 ≤ 1.5 =
LF ( )

2
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Conjecture

? ? ? µ(G ) ≤
LF (G )

2 ? ? ?
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Questions ?

Hansen, Hertz, Kilani, Marcotte, Schindl Average distance and maximum induced forest


