Average distance and maximum induced forest

Prof. Pierre Hansen, HEC Montréal
Prof. Alain Hertz, École Polytechnique de Montréal
Rim Kilani, Ph.D. student
Prof. Odile Marcotte, Université du Québec à Montréal
David Schindl, Postdoctoral student

GERAD

(1) Definitions and the conjecture 747
(2) Our theorem
(3) The proof: 6 graph transformations

- T_{1} : edge removal
- T_{2} : kite creation
- T_{3} : bridge shifting
- T_{4} : vertex shifting
- T_{5} : vertex removal
- T_{6} : double-kite increasing

4. An example
(5) Related results

- Characterization of extremal graphs
- A stronger conjecture

Definitions

Connected graph : $G=(V, E), n=|V|$
$\mu(G)=$ average distance among all pairs of vertices of G

$$
=\quad \frac{\sum_{v \neq w} d(v, w)}{\frac{n(n-1)}{2}}
$$

$$
\mu(G)=\frac{22}{15} \simeq 1.47
$$

Definitions

Connected graph : $G=(V, E), G^{\prime} \subseteq G, v \in V$

$$
\begin{aligned}
\sigma_{G^{\prime}}(v) & =\text { sum of all distances from } v \text { to all other vertices in } G^{\prime} \\
& =\text { transmission of } v \text { in } G^{\prime} \\
& =\sum_{w \in V\left(G^{\prime}\right)} d(v, w)
\end{aligned}
$$

Definitions

$\alpha(G)=$ size of a maximum stable set in G
$=$ stability number of G

$$
\alpha(G)=3
$$

Definitions

$\alpha_{2}(G)=$ size of a maximum induced bipartite subgraph in G
$=2$-stability number of G

$$
\alpha_{2}(G)=5
$$

2 disjoint stable sets induce a bipartite graph $\Longrightarrow \frac{\alpha_{2}(G)}{2} \leq \alpha(G)$

Conjecture 747

From "Written on the Wall" (conjectures automatically generated with the help of the Graffiti system, S. Fajtlowicz) :

Summer 92.
747. Let b be the onder of a largest bipartite subgraph of a connected graph G. Then the anerage distance between distinct vertices of G is not more than $b / 2$.

If correct this conjectare would generalize conj. 2 that the average distance is not more than the independence namber. This conjecture was proued by Fan Chung.

Conjecture 747

> Summer 92.
747. Let b be the onder of a largest bipartite subgraph of a connexted graph G. Then the average distance between distinct vertices of G is not mone than $b / 2$.

If correct this conjectarre would generalize conj. 2 that the average distance is not more than the independence number. This conjecture was prowed by Fan Chung.

$$
\begin{gathered}
\text { In our terms: } \mu(G) \leq \frac{\alpha_{2}(G)}{2} \text { ? } \\
\text { Fan Chung Theorem : } \mu(G) \leq \alpha(G)
\end{gathered}
$$

$F(G)=$ size of a maximum induced forest in G.
$=$ forest number of G
$=|V|$ - minimum number of vertices needed to cover all cycles

$$
F(G)=4
$$

A forest is special bipartite graph $\Longrightarrow F(G) \leq \alpha_{2}(G)$
Computing $F(G)$ is NP-hard
$F(G)=$ size of a maximum induced forest in G.
$=$ forest number of G

$$
F(G)=4
$$

A forest is a special bipartite graph $\Longrightarrow F(G) \leq \alpha_{2}(G)$

$$
\text { Our theorem : } \mu(G) \leq \frac{F(G)}{2}
$$

Corollary : $\mu(G) \leq \frac{\alpha_{2}(G)}{2}$

Our constructive proof :
$\mathrm{G} \rightarrow \mathrm{T}(\mathrm{G}) \rightarrow \mathrm{T}^{\prime}(\mathrm{T}(\mathrm{G})) \rightarrow \square \mathrm{G}^{\prime}$

Each transformation T has the following two properties :

- $\mu(T(G)) \geq \mu(G)$
- $F(T(G))=F(G)$

The graph G^{\prime} obtained at the end is very specific and verifies

$$
\begin{gathered}
\mu\left(G^{\prime}\right) \leq \frac{F\left(G^{\prime}\right)}{2} \\
\Rightarrow \mu(G) \leq \mu\left(G^{\prime}\right) \leq \frac{F\left(G^{\prime}\right)}{2}=\frac{F(G)}{2}
\end{gathered}
$$

Structure :

Input: G connected
Output: G^{\prime} such that $\mu(G) \leq \mu\left(G^{\prime}\right), F\left(G^{\prime}\right)=F(G)$ and $\left|V\left(G^{\prime}\right)\right|=|V(G)|$

1: $\operatorname{Set} G^{\prime}=G$
2: If T_{1} is applicable to G^{\prime}, set $G^{\prime}=T_{1}\left(G^{\prime}\right)$ and go to 2
3: If T_{2} is applicable to G^{\prime}, set $G^{\prime}=T_{2}\left(G^{\prime}\right)$ and go to 2
4: If T_{3} is applicable to G^{\prime}, set $G^{\prime}=T_{3}\left(G^{\prime}\right)$ and go to 2
5: If T_{4} is applicable to G^{\prime}, set $G^{\prime}=T_{4}\left(G^{\prime}\right)$ and go to 2
6: If T_{5} is applicable to G^{\prime}, set $G^{\prime}=T_{5}\left(G^{\prime}\right)$ and go to 2
7: Set $G^{\prime}=T_{6}\left(G^{\prime}\right)$ as many times as T_{5} has been applied.

For $T_{1}, T_{2}, T_{3}, T_{4}$ and T_{6}, we have :

- $\mu\left(T_{i}(G)\right)>\mu(G)$
- $F\left(T_{i}(G)\right)=F(G)$

Moreover,

- $\mu\left(T_{5}(G)\right) \geq \mu(G)$ (there is a possible equality)
- $F\left(T_{5}(G)\right)=F(G)$

Since T_{6} is applied as often as T_{5}, we conclude that:
If G^{\prime} is not equal to G, then

$$
\mu(G)<\mu\left(G^{\prime}\right) \leq \frac{F\left(G^{\prime}\right)}{2}=\frac{F(G)}{2}
$$

Definitions and the conjecture 747
The proof : 6 graph transformations
An example Related results
T_{1} : edge removal
T_{2} : kite creation
T_{3} : bridge shifting
T_{4} : vertex shifting
T_{5} : vertex removal
T_{6} : double-kite increasing

Claim : the graph obtained at the end of the algorithm is a balanced double kite.

Both cliques have the same (or almost the same) number of vertices.

Definitions and the conjecture 747
Our theorem
The proof : 6 graph transformations
T_{1} : edge removal
T_{2} : kite creation
T_{3} : bridge shifting
T_{4} : vertex shifting
T_{5} : vertex removal
T_{6} : double-kite increasing

T_{1} : edge removal

An edge e such that $F(G-e)>F(G)$ is called critical. An edge e such that G is connected and $G-e$ is disconnected is called a bridge.
Requirement : \exists a non-critical edge e which is not a bridge.

Property : if every edge is critical, then G is 2 -(vertex-)connected.

Definitions and the conjecture 747
Our theorem
The proof : 6 graph transformations
An example Related results
T_{1} : edge removal
T_{2} : kite creation
T_{3} : bridge shifting
T_{4} : vertex shifting
T_{5} : vertex removal
T_{6} : double-kite increasing

T_{2} : kite creation

Requirement: G contains a bridge (edge e such that $G-e$ is not connected).

- Length of the path chosen so that $F\left(T_{2}(G)\right)=F(G)$.
- Size of the clique chosen so that $\left|V\left(T_{2}(G)\right)\right|=|V(G)|$.

Limitation : only applicable to the smallest side of the bridge.

Definitions and the conjecture 747
The proof : 6 graph transformations
An example Related results
T_{1} : edge removal
T_{2} : kite creation
T_{3} : bridge shifting
T_{4} : vertex shifting
T_{5} : vertex removal
T_{6} : double-kite increasing

T_{3} : bridge shifting

Requirement: G contains a bridge.

v_{M} : vertex of G_{1} such that $\sigma_{G_{1}}\left(v_{M}\right)=\max _{v \in G_{1}} \sigma_{G_{1}}(v)$.

Definitions and the conjecture 747
The proof : 6 graph transformations
An example Related results
$T_{1}:$ edge removal
T_{2} : kite creation
T_{3} : bridge shifting
T_{4} : vertex shifting
T_{5} : vertex removal
T_{6} : double-kite increasing

T_{4} : vertex shifting

Requirements :

- G contains a bridge with end point v_{M} in G_{1}
- G_{2} is a kite
- $\left|V\left(G_{1}\right)\right|>\left|V\left(G_{2}\right)\right|$
- v_{M} has at least three neighbors

Definitions and the conjecture 747
T_{1} : edge removal
T_{2} : kite creation
T_{3} : bridge shifting
T_{4} : vertex shifting
T_{5} : vertex removal
T_{6} : double-kite increasing

T_{5} : vertex removal

Requirement : there is at most one non-critical edge of G, and it is a pending edge.

v : "central" vertex of G.

Definitions and the conjecture 747
Our theorem
The proof : 6 graph transformations
An example
Related results
T_{1} : edge removal
T_{2} : kite creation
T_{3} : bridge shifting
T_{4} : vertex shifting
T_{5} : vertex removal
T_{6} : double-kite increasing

T_{6} : double kite increasing

Requirement : G is a double kite.

G

$\mathrm{T}_{6}(\mathrm{G})$

An example

$$
\begin{gathered}
\mu(G)=2.14 \\
F(G)=8
\end{gathered}
$$

> Definitions and the conjecture 747
> Our theorem
> The proof : 6 graph transformations
> An example
> Related results

An example

> Definitions and the conjecture 747
> Our theorem
> The proof : 6 graph transformations
> An example
> Related results

An example

T_{5}

$$
\begin{aligned}
& \mu\left(G^{\prime}\right)=2.15 \\
& F\left(G^{\prime}\right)=8
\end{aligned}
$$

$$
\begin{aligned}
& \mu\left(G^{\prime}\right)=2.51 \\
& F\left(G^{\prime}\right)=8
\end{aligned}
$$

An example

An example

$$
\begin{aligned}
& \mu\left(G^{\prime}\right)=2.87 \\
& F\left(G^{\prime}\right)=8
\end{aligned}
$$

$$
\begin{aligned}
& \mu\left(G^{\prime}\right)=2.96 \\
& F\left(G^{\prime}\right)=8
\end{aligned}
$$

An example

$$
\begin{aligned}
& \mu\left(G^{\prime}\right)=2.96 \\
& F\left(G^{\prime}\right)=8
\end{aligned}
$$

$$
\begin{aligned}
& \mu\left(G^{\prime}\right)=3.24 \\
& F\left(G^{\prime}\right)=8
\end{aligned}
$$

An example

An example

An example

$$
\mu(G) \leq \mu\left(G^{\prime}\right)=3.49 \leq 4=\frac{F\left(G^{\prime}\right)}{2}=\frac{F(G)}{2}
$$

Extremal graphs

The graphs $G=(V, E)$ with $|V|=n$ vertices such that $F(G)=k$ and maximum $\mu(G)$ are

- the balanced double kite if $k \geq 4$
- the clique K_{n} if $k \leq 2$
- the balanced double kite or some other graphs like
 $k=3$

Characterization of extremal graphs

 A stronger conjecture
A stronger conjecture

$L F(G)=$ size of a maximum induced linear forest in G.

Characterization of extremal graphs

 A stronger conjecture
Conjecture

$? ? ? \mu(G) \leq \frac{L F(G)}{2} ? ? ?$

Characterization of extremal graphs

 A stronger conjecture
Questions?

