Average distance and maximum induced forest

Prof. Pierre Hansen, HEC Montréal Prof. Alain Hertz, École Polytechnique de Montréal Rim Kilani, Ph.D. student Prof. Odile Marcotte, Université du Québec à Montréal David Schindl, Postdoctoral student

GERAD

向下 イヨト イヨト

Our theorem

- 3 The proof : 6 graph transformations
 - T₁ : edge removal
 - T₂ : kite creation
 - T_3 : bridge shifting
 - T_4 : vertex shifting
 - T₅ : vertex removal
 - T₆ : double-kite increasing
- An example
- 5 Related results
 - Characterization of extremal graphs
 - A stronger conjecture

・ 同 ト ・ ヨ ト ・ ヨ ト

Definitions

Connected graph : G = (V, E), n = |V|

Definitions

Connected graph :
$$G = (V, E), G' \subseteq G, v \in V$$

・ロト ・回ト ・ヨト ・ヨト 三星

Definitions

 $\alpha(G) = \text{size of a maximum stable set in } G$ = stability number of G $\alpha(G) = 3$

・ロト ・回ト ・ヨト ・ヨト 三星

Definitions

 $\alpha_2(G)$ = size of a maximum induced bipartite subgraph in G = 2-stability number of G

 $\alpha_2(G) = 5$

2 disjoint stable sets induce a bipartite graph $\Longrightarrow \frac{\alpha_2(G)}{2} \leq \alpha(G)$

Conjecture 747

From "Written on the Wall" (conjectures automatically generated with the help of the Graffiti system, S. Fajtlowicz) :

Summer 92.

3

747. Let b be the order of a largest bipartite subgraph of a connected graph G. Then the average distance between distinct vertices of G is not more than b/2.

If correct this conjecture would generalize conj. 2 that the average distance is not more than the independence number. This conjecture was proved by Fan Chung.

Conjecture 747

Summer 92.

747. Let b be the order of a largest bipartite subgraph of a connected graph G. Then the average distance between distinct vertices of G is not more than b/2.

If correct this conjecture would generalize conj. 2 that the average distance is not more than the independence number. This conjecture was proved by Fan Chung.

In our terms :
$$\mu(G) \leq \frac{\alpha_2(G)}{2}$$
?

Fan Chung Theorem : $\mu(G) \leq \alpha(G)$

- F(G) = size of a maximum induced forest in G.
 - = forest number of *G*
 - = |V|- minimum number of vertices needed to cover all cycles

・ロン ・回 と ・ヨン ・ヨン

A forest is special bipartite graph \Longrightarrow $F(G) \leq \alpha_2(G)$

Computing F(G) is NP-hard

Hansen, Hertz, Kilani, Marcotte, Schindl Average distance and maximum induced forest

- F(G) = size of a maximum induced forest in G.
 - = forest number of *G*

F(G) = 4

A forest is a special bipartite graph \Longrightarrow $F(G) \leq \alpha_2(G)$

Our theorem :
$$\mu(G) \leq \frac{F(G)}{2}$$

Corollary :
$$\mu(G) \leq \frac{\alpha_2(G)}{2}$$

Definitions and the conjecture 747 Our theorem The proof : 6 graph transformations An example Related results T_1 : edge removal T_2 : kite creation T_3 : bridge shifting T_4 : vertex shifting T_6 : vertex removal T_6 : double-kite increasing

Our constructive proof :

$$\fbox{G} \rightarrow \fbox{T(G)} \rightarrow \fbox{T'(T(G))} \rightarrow \fbox{G'}$$

Each transformation T has the following two properties :

The graph G' obtained at the end is very specific and verifies

$$\mu(G') \leq \frac{F(G')}{2}$$

 $\Rightarrow \mu(G) \leq \mu(G') \leq \frac{F(G')}{2} = \frac{F(G)}{2}$

Structure :

Input: G connected **Output**: G' such that $\mu(G) \le \mu(G')$, F(G') = F(G) and |V(G')| = |V(G)|

1: Set G' = G

2: If T_1 is applicable to G', set $G' = T_1(G')$ and go to 2 3: If T_2 is applicable to G', set $G' = T_2(G')$ and go to 2 4: If T_3 is applicable to G', set $G' = T_3(G')$ and go to 2 5: If T_4 is applicable to G', set $G' = T_4(G')$ and go to 2 6: If T_5 is applicable to G', set $G' = T_5(G')$ and go to 2 7: Set $G' = T_6(G')$ as many times as T_5 has been applied.

イロト イボト イヨト イヨト

Definitions and the conjecture 747 Our theorem The proof : 6 graph transformations An example Related results T_6 : double-kite increasing

For T_1 , T_2 , T_3 , T_4 and T_6 , we have :

Moreover,

µ(T₅(G)) ≥ µ(G) (there is a possible equality)
 F(T₅(G)) = F(G)

Since T_6 is applied as often as T_5 , we conclude that :

If G' is not equal to G, then

$$\mu(G) < \mu(G') \leq \frac{F(G')}{2} = \frac{F(G)}{2}$$

-

Definitions and the conjecture 747 Our theorem The proof : 6 graph transformations An example Related results T_1 : edge removal T_2 : kite creation T_3 : bridge shifting T_4 : vertex shifting T_5 : vertex removal T_6 : double-kite increasing

Claim : the graph obtained at the end of the algorithm is a **balanced double kite**.

Both cliques have the same (or almost the same) number of vertices.

イロト イポト イヨト イヨト

Definitions and the conjecture 747 Our theorem The proof : 6 graph transformations An example Related results T_1 : edge removal T_2 : kite creation T_3 : bridge shifting T_4 : vertex shifting T_5 : vertex removal T_5 : vertex removal

T_1 : edge removal

An edge e such that F(G - e) > F(G) is called **critical**.

An edge e such that G is connected and G - e is disconnected is called a **bridge**.

Requirement : \exists a non-critical edge *e* which is not a bridge.

Property : if every edge is critical, then G is 2-(vertex-)connected.

Definitions and the conjecture 747 Our theorem The proof : 6 graph transformations Related results T_1 : edge removal T_2 : kite creation T_3 : bridge shifting T_4 : vertex shifting T_5 : vertex shifting T_6 : double-kite increasing

T_2 : kite creation

Requirement : G contains a bridge (edge e such that G - e is not connected).

- Length of the path chosen so that $F(T_2(G)) = F(G)$.
- Size of the clique chosen so that $|V(T_2(G))| = |V(G)|$.

Limitation : only applicable to the smallest side of the bridge.

 1
 edge removal

 2
 kite creation

 3
 bridge shifting

 4
 vertex shifting

 5
 vertex removal

 6
 double-kite increasing

T_3 : bridge shifting

Requirement : *G* contains a bridge.

 v_M : vertex of G_1 such that $\sigma_{G_1}(v_M) = \max_{v \in G_1} \sigma_{G_1}(v)$.

 1
 edge removal

 2
 kite creation

 3
 bridge shifting

 4
 vertex shifting

 5
 vertex removal

 6
 double-kite increase

T_4 : vertex shifting

Requirements :

- G contains a bridge with end point v_M in G_1
- G₂ is a kite
- $|V(G_1)| > |V(G_2)|$
- v_M has at least three neighbors

T_5 : vertex removal

Requirement : there is at most one non-critical edge of G, and it is a pending edge.

v: "central" vertex of G.

イロト イポト イヨト イヨト

 T_1 : edge removal T_2 : kite creation T_3 : bridge shifting T_4 : vertex shifting T_5 : vertex removal T_6 : double-kite increasing

T_6 : double kite increasing

Requirement : G is a double kite.

An example

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ○

An example

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

An example

 $\mu(G') = 2.15$ $\mu(G') = 2.51$ F(G') = 8 F(G') = 8

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

An example

 $\mu(G') = 2.51$ $\mu(G') = 2.87$ F(G') = 8 F(G') = 8

イロン 不同 とくさい 不良 とうき

An example

イロン 不同 とくさい 不良 とうき

An example

イロン 不同 とくさい 不良 とうき

An example

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● ○○○

An example

(日) (同) (目) (日) (日) (日)

An example

$$\mu(G) \le \mu(G') = 3.49 \le 4 = \frac{F(G')}{2} = \frac{F(G)}{2}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Characterization of extremal graphs A stronger conjecture

-

Extremal graphs

The graphs G = (V, E) with |V| = n vertices such that F(G) = kand maximum $\mu(G)$ are

- the balanced double kite if $k \ge 4$
- the clique K_n if $k \leq 2$
- the balanced double kite or some other graphs like b if k = 3

Characterization of extremal graphs A stronger conjecture

A stronger conjecture

LF(G)=size of a maximum induced linear forest in G.

Characterization of extremal graphs A stronger conjecture

・ロン ・回 と ・ヨン ・ヨン

Conjecture

??? $\mu(G) \leq \frac{LF(G)}{2}$???

Characterization of extremal graphs A stronger conjecture

・ロト ・回ト ・ヨト ・ヨト 三星

Questions ?

Hansen, Hertz, Kilani, Marcotte, Schindl Average distance and maximum induced forest