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A quick history ...

• Gomory’s Mixed Integer cut (1960).
Introduces the GMI procedure.

• Nemhauser and Wolsey (1990).
Introduces the MIR cut as a generalization of the GMI cut to non-tableau rows.

• Balas, Ceria, Cornuejols, Nataraj (1996).
Showed how to use GMI cuts in effective manner. 

• Bixby et al (2000,2004). 
Report importance of GMI/MIR cuts in modern software (CPLEX).
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• Effectiveness of generalized MIR inequalities.

• On the strength of GMI and MIR cuts.

• On numerically accurate GMI cuts.

• On GMI cuts from non-optimal bases.

An overview of my research on computing with 
MIR cuts (the last 5 years).
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• A more detailed look at the MIR cut. 

• On GMI cuts from non-optimal bases.

In this talk:
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A closer look at the MIR 
inequality
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i∈I

aixi +
�

j∈C

ajwj = b xi ∈ Z ∀i ∈ I
xi, wj ≥ 0 ∀i, j ∈ 1, . . . , n

A simple mixed-integer set:
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i∈I

aixi +
�

j∈C

ajwj = b xi ∈ Z ∀i ∈ I
xi, wj ≥ 0 ∀i, j ∈ 1, . . . , n

A simple mixed-integer set:

â = a− �a�Define

The Mixed-Integer-Rounding Cut (MIR) :

S = {i ∈ I : âi ≤ b̂}

�

i∈S

(âi + b̂�ai�)xi +
�

i∈I\S

(b̂+ b̂�ai�)xi +
�

aj>0

ajwj ≥ b̂�b�
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A simple mixed-integer set:

The Mixed-Integer-Rounding Cut (MIR) :

x+ y ≥ b y ∈ Z, x ≥ 0

x+ b̂y ≥ b̂�b�
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A fractional extreme point
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x ≥ b̂(�b� − y)

MIR inequality cuts it off!
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x ≥ b̂(�b� − y)

And defines convex hull of feasible region..
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x+ y ≥ b
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How to derive the general inequality?
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GMI cuts and optimal LP relaxation bases

When the base system is defined by an equality, 
and b is fractional, the MIR is equivalent to:

�

i∈I,âi<b̂

âi

b̂
xi +

�

i∈I,âi≥b̂

1− âi

1− b̂
xi +

1

b̂

�

j∈C:aj>0

ajwj +
1

1− b̂

�

j∈C:aj<0

ajwj ≥ 1

This is the GMI cut (Gomory, 1960). 
Base system optimal tableau row => violated!
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GMI-based algorithms.

1. Solve LP relaxation L(i)
2. Apply MIR procedure to optimal tableau rows
3. Add GMI cuts to L(i) and obtain L(i+1)
4. Go to step 1 and repeat.
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GMI-based algorithms.

1. Solve LP relaxation L(i)
2. Apply MIR procedure to optimal tableau rows
3. Add GMI cuts to L(i) and obtain L(i+1)
4. Go to step 1 and repeat.

+ Very good bound improvements
+ Relatively cheap (computational time)
- Dense high-rank cuts slow down LP solver
- Numerical problems lead to invalid cuts!
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Overcoming these difficulties

1. Carefully control the floating point arithmetic 
operations to ensure numerical correctness.

2. Stick to generating rank-1 cuts.
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Generating multiple rounds of 
rank-1 GMI inequalities
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GMI-based algorithms.

1. Solve LP relaxation L(i)
2. Apply MIR procedure to optimal tableau rows
3. Add GMI cuts to L(i) and obtain L(i+1)
4. Go to step 1 and repeat.
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Generating multiple rounds of rank-1 cuts.

1. Solve LP relaxation L(i)
2. Get x*, optimal solution of L(i)
3. Find a set of linear inequalities implied by L
4. Apply MIR procedure to these inequalities, 
and keep those that are violated by x*
5. Add MIR cuts to L(i) and obtain L(i+1)
6. Go to step 1 and repeat
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Generating multiple rounds of rank-1 cuts.

1. Solve LP relaxation L(i)
2. Get x*, optimal solution of L(i)
3. Find a set of linear inequalities implied by L
4. Apply MIR procedure to these inequalities, 
and keep those that are violated by x*
5. Add MIR cuts to L(i) and obtain L(i+1)
6. Go to step 1 and repeat
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Finding a set of linear inequalities implied by L:

First approach:  Use IP to compute appropriate linear 
combination of rows. 

Dash, Gunluk and Lodi (2010). 
Balas and Saxeena (2008).
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Finding a set of linear inequalities implied by L:

First approach:  Use IP to compute appropriate linear 
combination of rows. 

Dash, Gunluk and Lodi (2010). 
Balas and Saxeena (2008).

Method GAP closed

1-GMI 26.09%

DGL 62.53%

BS 76.52%

< 1h 
(w/ time limit)

< 10 days
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Our approach:  Use heuristics to compute appropriate 
bases of original LP, and apply GMI procedure. 
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We start with a system:

L1 = min{cx : Ax = b, x ≥ 0}

Li = min{c̄x̄ : Āx̄ = b̄, x̄ ≥ 0}
= min{cx : Ax = b, Cx ≥ d, x ≥ 0}

After several rounds of cuts we obtain:

B̄

If we solve Li, we obtain:

an optimal basis

an optimal LP solutionx̄∗
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We start with a system:

L1 = min{cx : Ax = b, x ≥ 0}

Li = min{c̄x̄ : Āx̄ = b̄, x̄ ≥ 0}
= min{cx : Ax = b, Cx ≥ d, x ≥ 0}

After several rounds of cuts we obtain:

B̄ an optimal basis

an optimal LP solutionx̄∗

can we
use these
to find a
“good” 
basis for 

our original
system??

If we solve Li, we obtain:
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Li = min{c̄x̄ : Āx̄ = b̄, x̄ ≥ 0}
= min{cx : Ax = b, Cx ≥ d, x ≥ 0}

This basis contains slack variables 
corresponding to rows defined by C! 

B̄ is an optimal basis of

Does the optimal basis of Li “contain” 
an optimal basis of L1 ?

(among the structural variables)
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B̄ =

�
AB̄ 0
CB̄ −I �

�

L1 = min{cx : Ax = b, x ≥ 0}

Li = min{c̄x̄ : Āx̄ = b̄, x̄ ≥ 0}
= min{cx : Ax = b, Cx ≥ d, x ≥ 0}

has full rank!AB̄
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The basic ideaLi = min{c̄x̄ : Āx̄ = b̄, x̄ ≥ 0}
= min{cx : Ax = b, Cx ≥ d, x ≥ 0}

B̄ an optimal basis ofConsider

IB̄

Look for a basis of
L1 = min{cx : Ax = b, x ≥ 0}

Among the columns of 

That is, ignore non-basic variables (fix 
them at their corresponding bounds) and 
consider the remaining subproblem.
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Graphically
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Graphically

1. Solve L1
and get this 

solution

2. Separate the 
point with a 

GMI cut

3. Re-optimize 
(solve L2) and 
get this point 

4. Find this 
basic feasible 
point for L1

5. Add this 
rank-1 cut to 
separate x*
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Also works with 
infeasible bases
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3 techniques to find the basis itself 

1. FEAS. 
   Solve LP on “unfixed” variables with original objective.

2. MATROID (greedy and random objectives).
   Use greedy matroid algorithm to find max set.

3. SPARSE.
   Refactorize a basis so as to achieve sparsity.

Friday, May 21, 2010



Computational results

MIPLIB 3.0 MIPLIB 2003

1-GMI 26.09 18.37

DGL 62.53 -

B-S 76.52 -

L&P 30.21 -

FEAS 43.96 27.64

SPARSE 38.56
42.

29.25

GREEDY 42.62 31.03

RANDOM 41.67 25.78

RANDOM5 48.10 29.75

ALL 52.39 35.51

Avg. Performance on MIPLIB Problems
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B̄ =

�
AB̄ 0
CB̄ −I �

�

L1 = min{cx : Ax = b, x ≥ 0}

Li = min{c̄x̄ : Āx̄ = b̄, x̄ ≥ 0}
= min{cx : Ax = b, Cx ≥ d, x ≥ 0}

has full rank!AB̄

We never assumed Cx >= 0 defined valid inequalities!
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Branch and Gather

1.  Input: x*

2.  Start branch-and-bound algorithm.

3.  At each node of the tree, let C represent
    branching constraints and locally valid cuts.

4.  At each node of tree, apply cut procedure.

5. Collect cuts for some number of nodes.
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Branch and Gather
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Computational results

MIPLIB 3.0 MIPLIB 2003

1-GMI 26.09 18.37

DGL 62.53 -

B-S 76.52 -

L&P 30.21 -

ALL 52.39 35.51

ALL+BG5 62.16 39.68

ALL+BG100 64.58 40.82

Avg. Performance on MIPLIB Problems. We use Branch-and-Gather 
algorithm on root node of each instance.
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Branch-and-Cut

If we add cuts at every node of the branch-and-bound 
tree we dont always do better.
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Branch-and-Cut

Solved in 26 minutes, using 7500 nodes.

CPLEX takes 1 hour, using 2,245,200 nodes.
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Branch-and-Cut

Solved in 92 hours, using 265,900 nodes.

First solved in 114 days of computing time, and 17 million nodes (problem 
specific cuts + grid-computing), by Buscieck et al. 2009.

Later solved in 22 hours of computing time by a problem-specific branch-and-cut 
method (see MIPLIB 2003 webpage).
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We don’t even need a system Cx >= d. Just a point x*.

Friday, May 21, 2010



We don’t even need a system Cx >= d. Just a point x*.

We can use this for non-linear MIPs as well!
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We don’t even need a system Cx >= d. Just a point x*.

We can use this for non-linear MIPs as well!

ibienst1 -- MINLP from Mittleman’s test set.
             quadratic objective, linear constraints

Given x* , linear relaxation optimum. Use FEAS to 
try to separate. Guaranteed to find a feasible solution 
-- not necessarily basic.
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We don’t even need a system Cx >= d. Just a point x*.

We can use this for non-linear MIPs as well!

ibienst1 -- MINLP from Mittleman’s test set.
             quadratic objective, linear constraints

Given x* , linear relaxation optimum. Use FEAS to 
try to separate. Guaranteed to find a feasible solution 
-- not necessarily basic.

In 3 seconds, using our heuristics, we obtain the same bound CPLEX 
11,2 obtains in 30 seconds after using 100+ nodes of branching.
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CONCLUSIONS

Given a nonbasic solution x* of an m-row system Ax = b, x >= 0 with m+t non-zeros:

1.  One can find a basis such that the GMI cuts from this basis are violated
    by x* if A is sparse and t is small.

3.  The time to find these cuts is comparable to generating a round of GMI cuts.

4.  Such cuts help to improve the bound.

5.  This procedure can be used to obtain GMI cuts from nodes of a branch-and-bound 
    tree or in nonlinear optimization problems.
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CONCLUSIONS

Given a nonbasic solution x* of an m-row system Ax = b, x >= 0 with m+t non-zeros:

1.  One can find a basis such that the GMI cuts from this basis are violated
    by x* if A is sparse and t is small.

3.  The time to find these cuts is comparable to generating a round of GMI cuts.

4.  Such cuts help to improve the bound.

5.  This procedure can be used to obtain GMI cuts from nodes of a branch-and-bound 
    tree or in nonlinear optimization problems.

Questions?
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Numerically accurate GMI 
inequalities
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Floating point arithmetic: basic properties.
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