A Survey on Results for the Stable Set Polytope of Claw-Free Graphs

Annegret K. Wagler
Institute for Mathematical Optimization (IMO) Otto-von-Guericke-Universität Magdeburg Germany

Seminar, LaBRI
November 7+14, 2006

Outline

(1) The stable set problem for claw-free graphs
(2) About rank constraints
(3) From matchings to clique family inequalities
(4) The Chvátal-rank of clique family inequalities
(5) Beyond clique family inequalities and quasi-line graphs
(6) Some conjectures for claw-free graphs

Outline

(1) The stable set problem for claw-free graphs
(2) About rank constraints

3 From matchings to clique family inequalities

4 The Chvátal-rank of clique family inequalities
(5) Beyond clique family inequalities and quasi-line graphs
(6) Some conjectures for claw-free graphs

The stable set problem

Stable set S
set of pairwise non-adjacent nodes of a graph G
Stable set problem determine a stable set of maximum cardinality or weight in a graph G

Problem (Grötschel, Lovász \& Schrijver 1988)

Consider the stable set polytope

$$
\operatorname{STAB}(G)=\operatorname{conv}\left\{\chi^{S} \in\{0,1\}^{|G|}: S \subseteq G \text { stable set }\right\}
$$

and find a representation

$$
\operatorname{STAB}(G)=\left\{x \in \mathbf{R}_{+}^{|G|}: A x \leq b\right\}
$$

via a facet-defining system in order to compute the stability number

$$
\alpha(G, c)=\max c^{\top} x, x \in \operatorname{STAB}(G)
$$

as a linear program.

The stable set problem for claw-free graphs

Definition

A graph G is claw-free if G does not contain
 as induced subgraph.

The stable set problem for claw-free graphs is "asymmetric" as it
can be solved in polynomial time by combinatorial algorithms of

- Minty (1980)
- Sbihi (1980)
- Nakamura and Tamura (2001)
but is not under control from the polyhedral point of view as
- there can occur arbitrarily complicated facets and
- even no conjecture was at hand (so farl)

The stable set problem for claw-free graphs

Definition

A graph G is claw-free if G does not contain as induced subgraph.

The stable set problem for claw-free graphs is "asymmetric" as it
can be solved in polynomial time by combinatorial algorithms of

- Minty (1980)
- Sbihi (1980)
- Nakamura and Tamura (2001)
but is not under control from the polyhedral point of view as
- there can occur arbitrarily complicated facets and
- even no conjecture was at hand

The stable set problem for claw-free graphs

Definition

A graph G is claw-free if G does not contain as induced subgraph.

The stable set problem for claw-free graphs is "asymmetric" as it
can be solved in polynomial time by combinatorial algorithms of

- Minty (1980)
- Sbihi (1980)
- Nakamura and Tamura (2001)
but is not under control from the polyhedral point of view as
- there can occur arbitrarily complicated facets and
- even no conjecture was at hand (so far!)

Clique constraints and perfect graphs

Clique constraints:

$$
x(Q)=\sum_{i \in Q} x_{i} \leq 1
$$

are valid inequalities for all cliques $Q \subseteq G$ and define facets iff Q is maximal
Clique constraint stable set polytope:
$\operatorname{QSTAB}(G)=\left\{x \in \mathbf{R}_{+}^{|G|}: x(Q) \leq 1\right.$ for $Q \subseteq G$ clique $\}$
Theorem (Chvátal 1975, Padberg 1974)
$\operatorname{STAB}(G)=\operatorname{QSTAB}(G)$ if and only if G is perfect.
Thus: Additional facets are required for any imperfect graph G since
$\operatorname{STAB}(G) \subset \operatorname{OSTAB}(G)$

Goal: Consider appropriate generalizations of clique constraints, namely, rank constraints and clique family inequalities

Clique constraints and perfect graphs

Clique constraints:

$$
x(Q)=\sum_{i \in Q} x_{i} \leq 1
$$

are valid inequalities for all cliques $Q \subseteq G$ and define facets iff Q is maximal
Clique constraint stable set polytope:
$\operatorname{QSTAB}(G)=\left\{x \in \mathbf{R}_{+}^{|G|}: x(Q) \leq 1\right.$ for $Q \subseteq G$ clique $\}$

Theorem (Chvátal 1975, Padberg 1974)

$\operatorname{STAB}(G)=\operatorname{QSTAB}(G)$ if and only if G is perfect.
Thus: Additional facets are required for any imperfect graph G since

$$
\operatorname{STAB}(G) \subset \operatorname{QSTAB}(G)
$$

Goal: Consider appropriate generalizations of clique constraints, namely, rank constraints and clique family inequalities

Outline

(1) The stable set problem for claw-free graphs
(2) About rank constraints

3 From matchings to clique family inequalities
4. The Chvátal-rank of clique family inequalities
(5) Beyond clique family inequalities and quasi-line graphs
(6) Some conjectures for claw-free graphs

Rank constraints and rank-perfect graphs

Rank constraints:

$$
x\left(G^{\prime}\right)=\sum_{i \in G^{\prime}} x_{i} \leq \alpha\left(G^{\prime}\right)
$$

are obviously valid inequalities for arbitrary induced subgraphs $G^{\prime} \subseteq G$

Definition (W. 2000)

A graph G is rank-perfect iff $\operatorname{STAB}(G)=\left\{x \in \mathbf{R}_{+}^{|G|}: x\left(G^{\prime}\right) \leq \alpha\left(G^{\prime}\right), G^{\prime} \subseteq G\right\}$.

Examples of rank-perfect graphs:

- perfect graphs
- t-perfect and h-perfect graphs (by definition)
- line graphs (Edmonds 1965)
- complements of webs and of fuzzy circular interval graphs (W. 2002, 2004)
- semi-line graphs (Chudnovsky \& Seymour 2004)

Rank constraints and rank-perfect graphs

Rank constraints:

$$
x\left(G^{\prime}\right)=\sum_{i \in G^{\prime}} x_{i} \leq \alpha\left(G^{\prime}\right)
$$

are obviously valid inequalities for arbitrary induced subgraphs $G^{\prime} \subseteq G$

Definition (W. 2000)

A graph G is rank-perfect iff $\operatorname{STAB}(G)=\left\{x \in \mathbf{R}_{+}^{|G|}: x\left(G^{\prime}\right) \leq \alpha\left(G^{\prime}\right), G^{\prime} \subseteq G\right\}$.

Examples of rank-perfect graphs:

- perfect graphs
- t-perfect and h-perfect graphs (by definition)
- line graphs (Edmonds 1965)
- complements of webs and of fuzzy circular interval graphs (W. 2002, 2004)
- semi-line graphs (Chudnovsky \& Seymour 2004)

Definitions and inclusions of the studied graph classes

The rank facets of claw-free graphs

Theorem (Galluccio \& Sassano 1997)

All rank facets of the stable set polytope of claw-free graphs can be obtained by means of standard techniques from

- cliques,
- line graphs of 2-connected hypomatchable graphs,
- partitionable webs $W_{\alpha \omega+1}^{\omega-1}$.

A graph H is hypomatchable if $H-v$ has a perfect matching for all nodes v.

Problem: What about the non-rank facets?

The rank facets of claw-free graphs

Theorem (Galluccio \& Sassano 1997)

All rank facets of the stable set polytope of claw-free graphs can be obtained by means of standard techniques from

- cliques,
- line graphs of 2-connected hypomatchable graphs,
- partitionable webs $W_{\alpha \omega+1}^{\omega-1}$.

A graph H is hypomatchable if $H-v$ has a perfect matching for all nodes v.

Problem: What about the non-rank facets?

Outline

(1) The stable set problem for claw-free graphs
(2) About rank constraints
(3) From matchings to clique family inequalities

44 The Chvátal-rank of clique family inequalities
(5) Beyond clique family inequalities and quasi-line graphs
(6) Some conjectures for claw-free graphs

Edmonds' description of matching polytopes

Theorem (Edmonds 1965)

The matching polytope $M(G)=\operatorname{conv}\left\{\chi^{M}: M \subseteq E(G)\right.$ matching $\}$ is given by

- trivial inequalities:

$$
x_{e} \geq 0 \forall \text { edges } e \in E(G)
$$

- edge star inequalities:

$$
x(\delta(v)) \leq 1 \forall v \in V(G), \delta(v)=\{e \in E(G): e \text { incident to } v\}
$$

- odd set inequalities:

$$
x(E[H]) \leq \frac{|H|-1}{2} \forall H \subseteq V(G) \text { with }|H| \geq 3 \text { odd }
$$

[^0]
Edmonds' description of matching polytopes

Theorem (Edmonds 1965)

The matching polytope $\mathrm{M}(G)=\operatorname{conv}\left\{\chi^{M}: M \subseteq E(G)\right.$ matching $\}$ is given by

- trivial inequalities:

$$
x_{e} \geq 0 \forall \text { edges } e \in E(G)
$$

- edge star inequalities:

$$
x(\delta(v)) \leq 1 \forall v \in V(G), \delta(v)=\{e \in E(G): e \text { incident to } v\}
$$

- odd set inequalities:

$$
x(E[H]) \leq \frac{|H|-1}{2} \forall H \subseteq V(G) \text { with }|H| \geq 3 \text { odd }
$$

Theorem (Edmonds \& Pulleyblank 1974)

An odd set inequality defines a facet if H is 2-connected, hypomatchable.

Consequences for stable set polytopes of line graphs

Line graph $L(F)$: (non)adjacent edges of F become (non)adjacent nodes of $L(F)$

Corollary

For any line graph $G=L(F)$, its stable set polytope $\operatorname{STAB}(G)$ is given by

- trivial inequalities:
$x_{v} \geq 0 \forall$ nodes $v \in V(G)$
- clique inequalities:
$x(Q) \leq 1 \forall$ cliques $Q \in G$
- rank inequalities
$v(I(H))<\left\lfloor\frac{|H|}{2}\right\rfloor \forall H \subseteq F$ 2-connected, hypomatchable

Consequences for stable set polytopes of line graphs

Line graph $L(F)$: (non)adjacent edges of F become (non)adjacent nodes of $L(F)$
matching

stable set

Corollary

For any line graph $G=L(F)$, its stable set polytope $\operatorname{STAB}(G)$ is given by

- trivial inequalities:

$$
x_{v} \geq 0 \forall \text { nodes } v \in V(G)
$$

- clique inequalities:

$$
x(Q) \leq 1 \forall \text { cliques } Q \in G
$$

- rank inequalities:

$$
x(L(H)) \leq\left\lfloor\frac{|H|}{2}\right\rfloor \forall H \subseteq F \text { 2-connected, hypomatchable }
$$

Extending odd set inequalities to clique family inequalities

odd set in F

Definition: clique family inequality (\mathcal{Q}, p) (CFI)

Let \mathcal{Q} be a family of ≥ 3 maximal cliques, $p \leq|\mathcal{Q}|$ a parameter, and

$$
\begin{aligned}
I(\mathcal{Q}, p) & =\{v \in V:|\{Q \in \mathcal{Q}: v \in Q\}| \geq p\} \\
O(\mathcal{Q}, p) & =\{v \in V:|\{Q \in \mathcal{Q}: v \in Q\}|=p-1\}
\end{aligned}
$$

Then, for $r=|\mathcal{Q}| \bmod p, r>0$, define the $\operatorname{CFI}(\mathcal{Q}, p)$ as

$$
(p-r) \sum_{v \in l(\mathcal{Q}, p)} x_{v}+(p-r-1) \sum_{v \in \mathcal{O}(\mathcal{Q}, p)} x_{v} \leq(p-r)\left\lfloor\frac{|\mathcal{Q}|}{p}\right\rfloor
$$

Example: The CFI $(Q, 2)$ of $\operatorname{STAB}(L(F))$ is $1 x(\bullet)+0 x(0) \leqslant 2$

The stable set polytope of quasi-line graphs

For which graphs do clique family inequalities suffice?

Ben Rebea Conjecture (1980)

The stable set polytope of any quasi-line graph is given by three types of constraints:

- nonnegativity constraints,
- clique constraints,
- clique family inequalities.

Conjecture verified for:

- line graphs (Edmonds 1965/Oriolo 2003)
- semi-line graphs (Chudnovsky and Seymour 2004)
- fuzzy circular interval graphs/quasi-line graphs (Eisenbrand, Oriolo, Stauffer, and Ventura 2005)

The stable set polytope of quasi-line graphs

For which graphs do clique family inequalities suffice?

Ben Rebea Conjecture (1980)

The stable set polytope of any quasi-line graph is given by three types of constraints:

- nonnegativity constraints,
- clique constraints,
- clique family inequalities.

Conjecture verified for:

- line graphs (Edmonds 1965/Oriolo 2003)
- semi-line graphs (Chudnovsky and Seymour 2004)
- fuzzy circular interval graphs/quasi-line graphs (Eisenbrand, Oriolo, Stauffer, and Ventura 2005)

Facet-defining clique family inequalities

Which clique family inequalities are essential?

- line graphs:
$(\mathcal{Q}, 2)$ with $I(\mathcal{Q}, 2)$ line graph of a 2-connected hypomatchable graph
- semi-line graphs:
clique family inequalities $(\mathcal{Q}, 2)$ with $|\mathcal{Q}|$ odd
\square
Conjecture extended to fuzzy circular interval graphs (Pêcher \& W. 2006)
- if true: webs would be crucial for all rank and non-rank facets of
fuzzy circular interval graphs

Facet-defining clique family inequalities

Which clique family inequalities are essential?

- line graphs:
$(\mathcal{Q}, 2)$ with $I(\mathcal{Q}, 2)$ line graph of a 2-connected hypomatchable graph
- semi-line graphs:
clique family inequalities $(\mathcal{Q}, 2)$ with $|\mathcal{Q}|$ odd

Conjecture (Pêcher \& W. 2004), Theorem (Stauffer 2005)

The stable set polytope of any web W_{n}^{k} admits only the following types of facets:

- nonnegativity constraints,
- clique constraints,
- full rank constraint $x\left(W_{n}^{k}\right) \leq \alpha\left(W_{n}^{k}\right)$,
- clique family inequalities $\left(\mathcal{Q}, k^{\prime}+1\right)$ associated with proper subwebs $W_{n^{\prime}}^{k^{\prime}}$.

Conjecture extended to fuzzy circular interval graphs (Pêcher \& W. 2006)

- if true: webs would be crucial for all rank and non-rank facets of
fuzzy circular interval graphs

Facet-defining clique family inequalities

Which clique family inequalities are essential?

- line graphs:
$(\mathcal{Q}, 2)$ with $I(\mathcal{Q}, 2)$ line graph of a 2-connected hypomatchable graph
- semi-line graphs:
clique family inequalities $(\mathcal{Q}, 2)$ with $|\mathcal{Q}|$ odd

Conjecture (Pêcher \& W. 2004), Theorem (Stauffer 2005)

The stable set polytope of any web W_{n}^{k} admits only the following types of facets:

- nonnegativity constraints,
- clique constraints,
- full rank constraint $x\left(W_{n}^{k}\right) \leq \alpha\left(W_{n}^{k}\right)$,
- clique family inequalities $\left(\mathcal{Q}, k^{\prime}+1\right)$ associated with proper subwebs $W_{n^{\prime}}^{k^{\prime}}$.

Conjecture extended to fuzzy circular interval graphs (Pêcher \& W. 2006)

- if true: webs would be crucial for all rank and non-rank facets of fuzzy circular interval graphs

Outline

(1) The stable set problem for claw-free graphs

2 About rank constraints
(3) From matchings to clique family inequalities
(4) The Chvátal-rank of clique family inequalities
(5) Beyond clique family inequalities and quasi-line graphs
(6) Some conjectures for claw-free graphs

The Chvátal-rank of inequalities and polytopes

Consider a polyhedron $P \subseteq \mathbb{R}^{n}$ and $P_{I}=\operatorname{conv}\left\{x \in \mathbb{Z}^{n}: x \in P\right\}$.
For any valid inequality $\sum a_{i} x_{i} \leq b$ of P with $a_{i} \in \mathbb{Z}$, the inequality

$$
\sum a_{i} x_{i} \leq\lfloor b\rfloor
$$

is a Chvátal-Gomory cut for P and valid for P_{I}.
The set P^{\prime} of points satisfying all such Chvátal-Gomory cuts for P is its Chvátal-closure. Let $P^{t+1}=\left(P^{t}\right)^{\prime}$, then

$$
P_{I} \subseteq P^{t} \subseteq P^{0}=P
$$

holds for every t.

Definition

- An inequality $\sum a_{i} x_{i} \leq b$ has Chvátal-rank at most t if it is valid for P^{t}.
- The smallest t with $P^{t}=P_{l}$ is the Chvátal-rank of P.

The Chvátal-rank of inequalities and polytopes

Consider a polyhedron $P \subseteq \mathbb{R}^{n}$ and $P_{I}=\operatorname{conv}\left\{x \in \mathbb{Z}^{n}: x \in P\right\}$.
For any valid inequality $\sum a_{i} x_{i} \leq b$ of P with $a_{i} \in \mathbb{Z}$, the inequality

$$
\sum a_{i} x_{i} \leq\lfloor b\rfloor
$$

is a Chvátal-Gomory cut for P and valid for P_{l}.
The set P^{\prime} of points satisfying all such Chvátal-Gomory cuts for P is its Chvátal-closure. Let $P^{t+1}=\left(P^{t}\right)^{\prime}$, then

$$
P_{I} \subseteq P^{t} \subseteq P^{0}=P
$$

holds for every t.

Definition

- An inequality $\sum a_{i} x_{i} \leq b$ has Chvátal-rank at most t if it is valid for P^{t}.
- The smallest t with $P^{t}=P_{l}$ is the Chvátal-rank of P.

Odd set inequalities and the fractional matching polytope have Chvátal-rank 1.

Edmonds' Conjecture

Conjecture (Edmonds 1973)

Claw-free graphs have Chvátal-rank 1.

The conjecture is true for line graphs (as odd set inequalities and, therefore, $P=\operatorname{QSTAB}(G)$ for any line graph G have Chvátal-rank 1).

Counterxample (Giles \& Trotter 1981, Oriolo 2003)

The fuzzy circular interval granh ohtained by joining the wehs W_{37}^{6} and W_{37}^{7} in a certain way has a clique family facet $(\mathcal{Q}, 8)$ This clique family inequality $(\mathcal{Q}, 8)$ has Chvátal-rank at least 2

Thus, the conjecture is not true in general!

Problem

- Is the conjecture true for other classes of claw-free graphs?
- Is there an upper bound for the Chvátal-rank of quasi-line graphs?

Edmonds' Conjecture

Conjecture (Edmonds 1973)

Claw-free graphs have Chvátal-rank 1.

The conjecture is true for line graphs (as odd set inequalities and, therefore, $P=\operatorname{QSTAB}(G)$ for any line graph G have Chvátal-rank 1).

Counterxample (Giles \& Trotter 1981, Oriolo 2003)

The fuzzy circular interval graph obtained by joining the webs W_{37}^{6} and W_{37}^{7} in a certain way has a clique family facet $(\mathcal{Q}, 8)$.
This clique family inequality $(\mathcal{Q}, 8)$ has Chvátal-rank at least 2.

Thus, the conjecture is not true in general!

Problem

- Is the conjecture true for other classes of claw-free graphs?
- Is there an upper bound for the Chvátal-rank of quasi-line graphs?

Edmonds' Conjecture

Conjecture (Edmonds 1973)

Claw-free graphs have Chvátal-rank 1.
The conjecture is true for line graphs (as odd set inequalities and, therefore, $P=\operatorname{QSTAB}(G)$ for any line graph G have Chvátal-rank 1).

Counterxample (Giles \& Trotter 1981, Oriolo 2003)

The fuzzy circular interval graph obtained by joining the webs W_{37}^{6} and W_{37}^{7} in a certain way has a clique family facet $(\mathcal{Q}, 8)$.
This clique family inequality $(\mathcal{Q}, 8)$ has Chvátal-rank at least 2.

Thus, the conjecture is not true in general!

Problem

- Is the conjecture true for other classes of claw-free graphs?
- Is there an upper bound for the Chvátal-rank of quasi-line graphs?

The Chvátal-rank of clique family inequalities

Theorem (Pêcher \& W. 2005)

Let (\mathcal{Q}, p) be a clique family inequality and let $r=|\mathcal{Q}|(\bmod p)$. For every $1 \leq i \leq p-r$, the inequality

$$
i \sum_{v \in l(\mathcal{Q}, p)} x_{v}+(i-1) \sum_{v \in O(\mathcal{Q}, p)} x_{v} \leq i\left\lfloor\frac{|\mathcal{Q}|}{p}\right\rfloor
$$

has Chvátal-rank at most i.
Remark: gives an alternative proof for the validity of clique family inequalities, involving only standard rounding arguments.
\square

- A clique family inequality (\mathcal{Q}, p) has Chvátal-rank at most $p-r$
- Every rank clique family inequality has Chvátal-rank

Consequence: Semi-line graphs have Chvátal-rank 1, thus Edmonds' conjecture is true for semi-line graphs.

The Chvátal-rank of clique family inequalities

Theorem (Pêcher \& W. 2005)

Let (\mathcal{Q}, p) be a clique family inequality and let $r=|\mathcal{Q}|(\bmod p)$. For every $1 \leq i \leq p-r$, the inequality

$$
i \sum_{v \in l(\mathcal{Q}, p)} x_{v}+(i-1) \sum_{v \in O(\mathcal{Q}, p)} x_{v} \leq i\left\lfloor\frac{|\mathcal{Q}|}{p}\right\rfloor
$$

has Chvátal-rank at most i.
Remark: gives an alternative proof for the validity of clique family inequalities, involving only standard rounding arguments.
\square

- A clique family inequality (\mathcal{Q}, p) has Chvátal-rank at most $p-r$
- Every rank clique family inequality has Chvátal-rank 1

Consequence: Semi-line graphs have Chvátal-rank 1, thus Edmonds' conjecture is true for semi-line graphs.

The Chvátal-rank of clique family inequalities

Theorem (Pêcher \& W. 2005)

Let (\mathcal{Q}, p) be a clique family inequality and let $r=|\mathcal{Q}|(\bmod p)$. For every $1 \leq i \leq p-r$, the inequality

$$
i \sum_{v \in l(\mathcal{Q}, p)} x_{v}+(i-1) \sum_{v \in O(\mathcal{Q}, p)} x_{v} \leq i\left\lfloor\frac{|\mathcal{Q}|}{p}\right\rfloor
$$

has Chvátal-rank at most i.
Remark: gives an alternative proof for the validity of clique family inequalities, involving only standard rounding arguments.

Corollary (Pêcher \& W. 2005)

- A clique family inequality (\mathcal{Q}, p) has Chvátal-rank at most $p-r$.
- Every rank clique family inequality has Chvátal-rank 1.

Consequence: Semi-line graphs have Chvátal-rank 1, thus Edmonds' conjecture is true for semi-line graphs.

Chvátal-rank of clique family inequalities: Examples

Example (Giles \& Trotter 1981)

For any $k \geq 1$, the graph $G^{k}=W_{n}^{k+1} \times W_{n}^{k}$ has a clique family facet $(\mathcal{Q}, k+2)$

$$
(k+1) x\left(W_{n}^{k+1}\right)+k x\left(W_{n}^{k}\right) \leq(k+1)\left\lfloor\frac{n}{k+2}\right\rfloor
$$

where \mathcal{Q} is of size $n=2 k(k+2)+1$.

For any $a \geq 1$, the web $W_{(2 a+3)^{2}}^{2(a+2)}$ has a clique family facet $(\mathcal{Q}, a+2)$
where Q is of size $(a+2)(2 a+3)$

Chvátal-rank of clique family inequalities: Examples

Example (Giles \& Trotter 1981)

For any $k \geq 1$, the graph $G^{k}=W_{n}^{k+1} \times W_{n}^{k}$ has a clique family facet $(\mathcal{Q}, k+2)$

$$
(k+1) x\left(W_{n}^{k+1}\right)+k x\left(W_{n}^{k}\right) \leq(k+1)\left\lfloor\frac{n}{k+2}\right\rfloor
$$

where \mathcal{Q} is of size $n=2 k(k+2)+1$.

Example (Liebling, Oriolo, Spille, and Stauffer 2004)

For any $a \geq 1$, the web $W_{(2 a+3)^{2}}^{2(a+2)}$ has a clique family facet $(\mathcal{Q}, a+2)$

$$
(a+1) x(I(\mathcal{Q}, a+2))+a x(O(\mathcal{Q}, a+2)) \leq(a+1)\left\lfloor\frac{|\mathcal{Q}|}{a+2}\right\rfloor
$$

where \mathcal{Q} is of size $(a+2)(2 a+3)$.

Chvátal-rank of clique family inequalities: Improved bound

Theorem (Pêcher \& W. 2005)

A clique family inequality (\mathcal{Q}, p) with $r=|\mathcal{Q}|(\bmod p)$ has Chvátal-rank at most $\min \{r, p-r\}$

Example: The above clique family inequalities with arbitrarily high coefficients have Chvátal-rank one as $r=1$ holds in both cases.

```
Corollary (Pêcher & W. 2005)
A clique familv inequalitv (O. p) has Chvátal-rank at most
Consequence:
    - All facets of a web WN have Chvátal-rank at most k-1
    - There is no general upper bound on the Chvátal-rank, as for any k\geq1, there
        are clique family facets (Q,2k+1) with }k=\operatorname{min}{2k+1-k,k}
```

Problem: Establish a lower bound on the Chvátal-rank!

Chvátal-rank of clique family inequalities: Improved bound

Theorem (Pêcher \& W. 2005)

A clique family inequality (\mathcal{Q}, p) with $r=|\mathcal{Q}|(\bmod p)$ has Chvátal-rank at most $\min \{r, p-r\}$

Example: The above clique family inequalities with arbitrarily high coefficients have Chvátal-rank one as $r=1$ holds in both cases.

Corollary (Pêcher \& W. 2005)

A clique family inequality (\mathcal{Q}, p) has Chvátal-rank at most $\frac{p}{2}$.

Consequence:

- All facets of a web W_{n}^{k} have Chvátal-rank at most
- There is no general upper bound on the Chvátal-rank, as for any $k \geq 1$, there are clique family facets $(\mathcal{Q}, 2 k+1)$ with $k=\min \{2 k+1-k, k\}$
Problem: Establish a lower bound on the Chvátal-rank!

Chvátal-rank of clique family inequalities: Improved bound

Theorem (Pêcher \& W. 2005)

A clique family inequality (\mathcal{Q}, p) with $r=|\mathcal{Q}|(\bmod p)$ has Chvátal-rank at most

$$
\min \{r, p-r\}
$$

Example: The above clique family inequalities with arbitrarily high coefficients have Chvátal-rank one as $r=1$ holds in both cases.

Corollary (Pêcher \& W. 2005)

A clique family inequality (\mathcal{Q}, p) has Chvátal-rank at most $\frac{p}{2}$.

Consequence:

- All facets of a web W_{n}^{k} have Chvátal-rank at most $\frac{k-1}{2}$.
- There is no general upper bound on the Chvátal-rank, as for any $k \geq 1$, there are clique family facets $(\mathcal{Q}, 2 k+1)$ with $k=\min \{2 k+1-k, k\}$.

> Problem: Establish a lower bound on the Chvátal-rank!

Chvátal-rank of clique family inequalities: Improved bound

Theorem (Pêcher \& W. 2005)

A clique family inequality (\mathcal{Q}, p) with $r=|\mathcal{Q}|(\bmod p)$ has Chvátal-rank at most

$$
\min \{r, p-r\}
$$

Example: The above clique family inequalities with arbitrarily high coefficients have Chvátal-rank one as $r=1$ holds in both cases.

Corollary (Pêcher \& W. 2005)

A clique family inequality (\mathcal{Q}, p) has Chvátal-rank at most $\frac{p}{2}$.

Consequence:

- All facets of a web W_{n}^{k} have Chvátal-rank at most $\frac{k-1}{2}$.
- There is no general upper bound on the Chvátal-rank, as for any $k \geq 1$, there are clique family facets $(\mathcal{Q}, 2 k+1)$ with $k=\min \{2 k+1-k, k\}$.
Problem: Establish a lower bound on the Chvátal-rank!

Outline

(1) The stable set problem for claw-free graphs
(2) About rank constraints

3 From matchings to clique family inequalities
4. The Chvátal-rank of clique family inequalities
(5) Beyond clique family inequalities and quasi-line graphs
(6) Some conjectures for claw-free graphs

Beyond clique family inequalities and quasi-line graphs

A graph is distance claw-free if, for every of its nodes v, neither $N(v)$ nor $N_{2}(v)$ contains a stable set of size 3 .

More complex facets for general claw-free graphs

There are claw-free graphs whose stable set polytopes admit facets neither induced by cliques nor clique families:

Three Examples

5-wheel

$$
x(0)+2 x(\bullet) \leq 2
$$

($Q, 3$) with $r=2$ yields
$0 x(0)+1 x(0) \leqslant 1$
$(Q, 3)$ with $r=1$ yields

$$
x(0)+2 x(0) \leq 4
$$

graph G_{3}

$x(0)+2 x(0)+3 x(0) \leq 4$
more than two non-zero coefficients required

The graphs with stability number two

Theorem (Cook 1987)

The stable set polytope of any graph G with $\alpha(G) \leq 2$ is entirely described by

- trivial inequalities:

$$
x_{v} \geq 0 \forall v \in V(G)
$$

- clique neighborhood inequalities $F(Q)$:

$$
2 x(Q)+1 x\left(N^{\prime}(Q)\right) \leq 2 \text { for all cliques } Q \text { where } N^{\prime}(Q)=\{v: Q \subseteq N(v)\}
$$ and $F(Q)$ is a facet iff $N^{\prime}(Q)$ has in \bar{G} no bipartite component.

Q	$N^{\prime}(Q)$
maximal	\emptyset
$\{v\}$	C_{5}
\emptyset	$V(G)$

The graphs with stability number at least four

A connected claw-free graph G with $\alpha(G) \geq 4$

- is either fuzzy circular interval or can be composed from linear interval strips (Chudnovsky \& Seymour 2005)
- is quasi-line iff G does not contain a 5 -wheel (Fouquet 1993)
- has constraints associated with induced 5 -wheels which can be lifted to more general inequalities $1 x(\circ)+2 x(\bullet) \leq 2$ (Stauffer 2005)

```
Conjecture (Stauffer 2005)
The stable set polytope of a claw-free but not fuzzy circular interval graph G with
\alpha(G)>4 is given by
- nonnegativity constraints
- rank constraints
- lifted 5-wheel constraints
```

This would imply: all non-rank facets of a claw-free but not fuzzy circular interval graph G with $\alpha(G) \neq 3$ are clique neighborhood constraints!

The graphs with stability number at least four

A connected claw-free graph G with $\alpha(G) \geq 4$

- is either fuzzy circular interval or can be composed from linear interval strips (Chudnovsky \& Seymour 2005)
- is quasi-line iff G does not contain a 5-wheel (Fouquet 1993)
- has constraints associated with induced 5-wheels which can be lifted to more general inequalities $1 x(\circ)+2 x(\bullet) \leq 2$ (Stauffer 2005)

Conjecture (Stauffer 2005)

The stable set polytope of a claw-free but not fuzzy circular interval graph G with $\alpha(G) \geq 4$ is given by

- nonnegativity constraints
- rank constraints
- lifted 5-wheel constraints

This would imply: all non-rank facets of a claw-free but not fuzzy circular interval graph G with $\alpha(G) \neq 3$ are clique neighborhood constraints!

The graphs with stability number three: Known Facets

Examples (Giles \& Trotter 1981, Liebling et al. 2004)

wedge

$$
x(0)+2 x(0) \leq 3 \quad x(0)+2 x(\bullet)+3 x(0) \leq 4 \quad x(0)+2 x(0)+3 x(0)+4 x(0) \leq 5
$$

Observation: all the known examples of complicated facets for claw-free graphs occur in the case $\alpha(G)=3$, but they are not well-understood (so far)

The graphs with stability number three: Known Facets

Examples (Giles \& Trotter 1981, Liebling et al. 2004)

wedge

Giles \& Trotter graph fish in a net

$$
x(0)+2 x(0) \leq 3 \quad x(0)+2 x(0)+3 x(0) \leq 4 \quad x(0)+2 x(0)+3 x(0)+4 x(0) \leq 5
$$

Observation: all the known examples of complicated facets for claw-free graphs occur in the case $\alpha(G)=3$, but they are not well-understood (so far)

Our goal: describe their structure!

The graphs with stability number three: Wedges

A wedge is a claw-free graph G s.t. \bar{G} has

- a unique triangle Δ
- a spanning tree T with 2 or 3 spokes of appropriate length
- additional edges (to avoid claws in G)

Theorem (Giles \& Trotter 1981)

Every wedge induces the facet

and its roots ($=$ tight stable sets) correspond to the following cliques of \bar{G} :
e the $|G|-1$ edges of the spanning tree T

- the unique triangle \triangle

The graphs with stability number three: Wedges

A wedge is a claw-free graph G s.t. \bar{G} has

- a unique triangle Δ
- a spanning tree T with 2 or 3 spokes of appropriate length
- additional edges (to avoid claws in G)

Theorem (Giles \& Trotter 1981)

Every wedge induces the facet

$$
1 x(\circ)+2 x(\bullet) \leq 3
$$

and its roots (= tight stable sets) correspond to the following cliques of \bar{G} :

- the $|G|-1$ edges of the spanning tree T
- the unique triangle Δ

1. Extension: Co-spanning tree constraints

Definition

Consider a graph G with $\alpha(G)=3$. A non-rank facet $a^{T} x \leq b$ of $\operatorname{STAB}(G)$ is a co-spanning tree constraint if its roots correspond to the following cliques of \bar{G} :

- the $|G|-1$ edges of a spanning tree T
- one triangle Δ

Observation
 - the facets of wedges are of this type
 - all such facets are of the form $1 x(0)+2 x(\bullet) \leq 3$

Thus: generalize further to obtain more than two and higher coefficients!

1. Extension: Co-spanning tree constraints

Definition

Consider a graph G with $\alpha(G)=3$. A non-rank facet $a^{T} x \leq b$ of $\operatorname{STAB}(G)$ is a co-spanning tree constraint if its roots correspond to the following cliques of \bar{G} :

- the $|G|-1$ edges of a spanning tree T
- one triangle Δ

Observation

- the facets of wedges are of this type
- all such facets are of the form $1 x(\circ)+2 x(\bullet) \leq 3$

Thus: generalize further to obtain more than two and higher coefficients!

2. Extension: Co-spanning forest constraints

Definition

Consider a graph G with $\alpha(G)=3$. A non-rank facet $a^{T} x \leq b$ of $\operatorname{STAB}(G)$ is a co-spanning forest constraint if its roots correspond to the following cliques of \bar{G} :

- the $|G|-k$ edges of a spanning forest F with k tree-components
- k triangles
new example

$$
x(0)+2 x(0) \leq 3
$$

fish in a net

$x(0)+2 x(0)+3 x(0)+4 x(0) \leq 5$

3. Extension: Co-spanning 1-forest constraints

Giles \& Trotter graph

$x(0)+2 x(0)+3 x(0) \leq 4$
fish in a net with bubble

$2 x(0)+3 x(0)+4 x(0)+5 x(0)+6 x(0) \leq 8$

Definition

Consider a graph G with $\alpha(G)=3$. A non-rank facet $a^{T} x \leq b$ of $\operatorname{STAB}(G)$ is a co-spanning 1 -forest constraint if its roots correspond in \bar{G} to:

- the $|G|-k$ edges of a spanning 1 -forest F consisting of some odd 1-trees and k trees as components
- k triangles

The graphs with stability number three: The Description

Theorem (Pêcher, W. 2006)

If $\alpha(G)=3$, then all non-rank, non-complete join facets $a^{T} x \leq b$ are

- co-spanning forest constraints if b is odd;
- co-spanning 1-forest constraints if b is even.

$$
2 x(0)+3 x(\bullet)+4 x(0) \leq 6
$$

$x(0)+2 x(\bullet)+3 x(0)+4 x(0)+5 x(\odot)+6 x(0) \leq 7$
\square
In the stable set polytope of a claw-free graph G with $\alpha(G)$ every non-rank facet is a co-spanning 1 -forest constraint

The graphs with stability number three: The Description

Theorem (Pêcher, W. 2006)

If $\alpha(G)=3$, then all non-rank, non-complete join facets $a^{T} x \leq b$ are

- co-spanning forest constraints if b is odd;
- co-spanning 1-forest constraints if b is even.

$$
2 x(0)+3 x(\bullet)+4 x(0) \leq 6 \quad x(0)+2 x(\bullet)+3 x(0)+4 x(0)+5 x(\odot)+6 x(0) \leq 7
$$

Theorem (Pêcher, W. 2006)

In the stable set polytope of a claw-free graph G with $\alpha(G) \leq 3$, every non-rank facet is a co-spanning 1-forest constraint.

Outline

(1) The stable set problem for claw-free graphs
(2) About rank constraints

3 From matchings to clique family inequalities
4. The Chvátal-rank of clique family inequalities
(5) Beyond clique family inequalities and quasi-line graphs
(6) Some conjectures for claw-free graphs

The types of non-rank facets for claw-free graphs

Combine the results/conjectures on non-rank facets for claw-free graphs G with

- $\alpha(G)=2$ (Cook 1987)
- $\alpha(G)=3$ (Pêcher, W. 2006)
- $\alpha(G) \geq 4$ (Stauffer 2005)

Conjecture (Pêcher, W. 2006)

A non-rank facet associated with a claw-free graph G is a

- clique neighborhood constraint if $\alpha(G)=2$
- co-spanning 1-forest constraint if $\alpha(G)=3$
- clique family inequality or a clique neighborhood constraint if $\alpha(G) \geq 4$

> A non-rank facet associated with a claw-free graph G is a

- clique family inequality if G is quasi-line,
- co-spanning 1-forest constraint otherwise.

The types of non-rank facets for claw-free graphs

Combine the results/conjectures on non-rank facets for claw-free graphs G with

- $\alpha(G)=2$ (Cook 1987)
- $\alpha(G)=3$ (Pêcher, W. 2006)
- $\alpha(G) \geq 4$ (Stauffer 2005)

Conjecture (Pêcher, W. 2006)

A non-rank facet associated with a claw-free graph G is a

- clique neighborhood constraint if $\alpha(G)=2$
- co-spanning 1-forest constraint if $\alpha(G)=3$
- clique family inequality or a clique neighborhood constraint if $\alpha(G) \geq 4$

Conjecture (Pêcher, W. 2006)

A non-rank facet associated with a claw-free graph G is a

- clique family inequality if G is quasi-line,
- co-spanning 1 -forest constraint otherwise.

Types of facet-defining subgraphs

Conjecture (Pêcher, W. 2006)

All non-rank facets of the stable set polytope of claw-free graphs rely on

- odd antiwheels (clique neighborhood constraints),
- co-spanning 1-forests (co-spanning 1-forest constraints),
- prime webs (clique family inequalities).

Conjecture (Pêcher \& W. 2006)

for non-clique facets of the stable set polytope of quasi-line graphs:

[^0]: Theorem (Edmonds \& Pulleyblank 1974)
 An odd set inequality defines a facet if H is 2 -connected, hypomatchable

