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The stable set problem

Stable set S
set of pairwise non-adjacent nodes of a graph G

Stable set problem
determine a stable set of maximum cardinality or weight in a graph G

Problem (Grötschel, Lovász & Schrijver 1988)

Consider the stable set polytope

STAB(G ) = conv{χS ∈ {0, 1}|G | : S ⊆ G stable set}

and find a representation

STAB(G ) = {x ∈ R
|G |
+ : Ax ≤ b}

via a facet-defining system in order to compute the stability number

α(G , c) = max cT x , x ∈ STAB(G )

as a linear program.
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The stable set problem for claw-free graphs

Definition

A graph G is claw-free if G does not contain as induced subgraph.

The stable set problem for claw-free graphs is “asymmetric”
as it

can be solved in polynomial time by combinatorial algorithms of

Minty (1980)

Sbihi (1980)

Nakamura and Tamura (2001)

but is not under control from the polyhedral point of view as

there can occur arbitrarily complicated facets and

even no conjecture was at hand (so far!)
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Clique constraints and perfect graphs

Clique constraints:

x(Q) =
∑
i∈Q

xi ≤ 1

are valid inequalities for all cliques Q ⊆ G and define facets iff Q is maximal

Clique constraint stable set polytope:

QSTAB(G ) = {x ∈ R
|G |
+ : x(Q) ≤ 1 for Q ⊆ G clique}

Theorem (Chvátal 1975, Padberg 1974)

STAB(G ) = QSTAB(G ) if and only if G is perfect.

Thus: Additional facets are required for any imperfect graph G since

STAB(G ) ⊂ QSTAB(G )

Goal: Consider appropriate generalizations of clique constraints, namely,
rank constraints and clique family inequalities
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Rank constraints and rank-perfect graphs

Rank constraints:

x(G ′) =
∑
i∈G ′

xi ≤ α(G ′)

are obviously valid inequalities for arbitrary induced subgraphs G ′ ⊆ G

Definition (W. 2000)

A graph G is rank-perfect iff STAB(G ) = {x ∈ R
|G |
+ : x(G ′) ≤ α(G ′), G ′ ⊆ G}.

Examples of rank-perfect graphs:

perfect graphs

t-perfect and h-perfect graphs (by definition)

line graphs (Edmonds 1965)

complements of webs and of fuzzy circular interval graphs (W. 2002, 2004)

semi-line graphs (Chudnovsky & Seymour 2004)
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Definitions and inclusions of the studied graph classes

odd hole

semi−line 

line 

fuzzy circ.int.

web

quasi−line

claw−free

neighbors of every node
split into two cliques

quasi−line graph 
which is not
fuzzy circular interval

line graph or a

adjacent edges 
of root graph F to
adjacent nodes 
of line graph L(F)
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The rank facets of claw-free graphs

Theorem (Galluccio & Sassano 1997)

All rank facets of the stable set polytope of claw-free graphs can be obtained by
means of standard techniques from

cliques,

line graphs of 2-connected hypomatchable graphs,

partitionable webs W ω−1
αω+1.

A graph H is hypomatchable if H − v has a perfect matching for all nodes v .

Problem: What about the non-rank facets?
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Edmonds’ description of matching polytopes

Theorem (Edmonds 1965)

The matching polytope M(G ) = conv{χM : M ⊆ E (G ) matching} is given by

trivial inequalities:
xe ≥ 0 ∀ edges e ∈ E (G )

edge star inequalities:
x(δ(v)) ≤ 1 ∀v ∈ V (G ), δ(v) = {e ∈ E (G ) : e incident to v}

odd set inequalities:

x(E [H]) ≤ |H|−1
2 ∀H ⊆ V (G ) with |H| ≥ 3 odd

edge star odd set

Theorem (Edmonds & Pulleyblank 1974)

An odd set inequality defines a facet if H is 2-connected, hypomatchable.
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Consequences for stable set polytopes of line graphs

Line graph L(F ): (non)adjacent edges of F become (non)adjacent nodes of L(F )

stable setmatching

Corollary

For any line graph G = L(F ), its stable set polytope STAB(G ) is given by

trivial inequalities:
xv ≥ 0 ∀nodes v ∈ V (G )

clique inequalities:
x(Q) ≤ 1 ∀cliques Q ∈ G

rank inequalities:

x(L(H)) ≤
⌊
|H|
2

⌋
∀H ⊆ F 2-connected, hypomatchable
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Extending odd set inequalities to clique family inequalities

clique family in L(F)odd set in F

Definition: clique family inequality (Q, p) (CFI)

Let Q be a family of ≥ 3 maximal cliques, p ≤ |Q| a parameter, and

I (Q, p) = {v ∈ V : |{Q ∈ Q : v ∈ Q}| ≥ p}
O(Q, p) = {v ∈ V : |{Q ∈ Q : v ∈ Q}| = p − 1}

Then, for r = |Q| mod p, r > 0, define the CFI (Q, p) as

(p − r)
∑

v∈I (Q,p)

xv + (p − r − 1)
∑

v∈O(Q,p)

xv ≤ (p − r)

⌊
|Q|
p

⌋

The CFI  (   ,2)  of STAB( L(F) ) is  1 x(  ) + 0 x(  ) < 2QExample:
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The stable set polytope of quasi-line graphs

For which graphs do clique family inequalities suffice?

Ben Rebea Conjecture (1980)

The stable set polytope of any quasi-line graph is given by three types of
constraints:

nonnegativity constraints,

clique constraints,

clique family inequalities.

Conjecture verified for:

line graphs (Edmonds 1965/Oriolo 2003)

semi-line graphs (Chudnovsky and Seymour 2004)

fuzzy circular interval graphs/quasi-line graphs
(Eisenbrand, Oriolo, Stauffer, and Ventura 2005)
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Facet-defining clique family inequalities

Which clique family inequalities are essential?

line graphs:
(Q, 2) with I (Q, 2) line graph of a 2-connected hypomatchable graph

semi-line graphs:
clique family inequalities (Q, 2) with |Q| odd

Conjecture (Pêcher & W. 2004), Theorem (Stauffer 2005)

The stable set polytope of any web W k
n admits only the following types of facets:

nonnegativity constraints,

clique constraints,

full rank constraint x(W k
n ) ≤ α(W k

n ),

clique family inequalities (Q, k ′+1) associated with proper subwebs W k′

n′ .

Conjecture extended to fuzzy circular interval graphs (Pêcher & W. 2006)

if true: webs would be crucial for all rank and non-rank facets of
fuzzy circular interval graphs
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The Chvátal-rank of inequalities and polytopes

Consider a polyhedron P ⊆ Rn and PI = conv{x ∈ Zn : x ∈ P}.

For any valid inequality
∑

aixi ≤ b of P with ai ∈ Z, the inequality∑
aixi ≤ bbc

is a Chvátal-Gomory cut for P and valid for PI .

The set P ′ of points satisfying all such Chvátal-Gomory cuts for P is its
Chvátal-closure. Let P t+1 = (P t)′, then

PI ⊆ P t ⊆ P0 = P

holds for every t.

Definition

An inequality
∑

aixi ≤ b has Chvátal-rank at most t if it is valid for P t .

The smallest t with P t = PI is the Chvátal-rank of P.

Odd set inequalities and the fractional matching polytope have Chvátal-rank 1.
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Edmonds’ Conjecture

Conjecture (Edmonds 1973)

Claw-free graphs have Chvátal-rank 1.

The conjecture is true for line graphs (as odd set inequalities and, therefore,
P = QSTAB(G ) for any line graph G have Chvátal-rank 1).

Counterxample (Giles & Trotter 1981, Oriolo 2003)

The fuzzy circular interval graph obtained by joining the webs W 6
37 and W 7

37 in a
certain way has a clique family facet (Q, 8).
This clique family inequality (Q, 8) has Chvátal-rank at least 2.

Thus, the conjecture is not true in general!

Problem

Is the conjecture true for other classes of claw-free graphs?

Is there an upper bound for the Chvátal-rank of quasi-line graphs?
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Counterxample (Giles & Trotter 1981, Oriolo 2003)

The fuzzy circular interval graph obtained by joining the webs W 6
37 and W 7

37 in a
certain way has a clique family facet (Q, 8).
This clique family inequality (Q, 8) has Chvátal-rank at least 2.
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The Chvátal-rank of clique family inequalities

Theorem (Pêcher & W. 2005)

Let (Q, p) be a clique family inequality and let r = |Q| (mod p). For every
1 ≤ i ≤ p − r , the inequality

i
∑

v∈I (Q,p)

xv + (i − 1)
∑

v∈O(Q,p)

xv ≤ i

⌊
|Q|
p

⌋
has Chvátal-rank at most i .

Remark: gives an alternative proof for the validity of clique family inequalities,
involving only standard rounding arguments.

Corollary (Pêcher & W. 2005)

A clique family inequality (Q, p) has Chvátal-rank at most p − r .

Every rank clique family inequality has Chvátal-rank 1.

Consequence: Semi-line graphs have Chvátal-rank 1, thus Edmonds’ conjecture
is true for semi-line graphs.
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The Chvátal-rank of clique family inequalities

Theorem (Pêcher & W. 2005)

Let (Q, p) be a clique family inequality and let r = |Q| (mod p). For every
1 ≤ i ≤ p − r , the inequality

i
∑

v∈I (Q,p)

xv + (i − 1)
∑

v∈O(Q,p)

xv ≤ i

⌊
|Q|
p

⌋
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Chvátal-rank of clique family inequalities: Examples

Example (Giles & Trotter 1981)

For any k ≥ 1, the graph G k = W k+1
n ×W k

n has a clique family facet (Q, k + 2)

(k + 1)x(W k+1
n ) + kx(W k

n ) ≤ (k + 1)
⌊

n
k+2

⌋
where Q is of size n = 2k(k + 2) + 1.

Example (Liebling, Oriolo, Spille, and Stauffer 2004)

For any a ≥ 1, the web W
2(a+2)
(2a+3)2 has a clique family facet (Q, a + 2)

(a + 1)x(I (Q, a + 2)) + ax(O(Q, a + 2)) ≤ (a + 1)
⌊
|Q|
a+2

⌋
where Q is of size (a + 2)(2a + 3).
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Chvátal-rank of clique family inequalities: Improved bound

Theorem (Pêcher & W. 2005)

A clique family inequality (Q, p) with r = |Q| (mod p) has Chvátal-rank at most

min{r , p − r}

Example: The above clique family inequalities with arbitrarily high coefficients
have Chvátal-rank one as r = 1 holds in both cases.

Corollary (Pêcher & W. 2005)

A clique family inequality (Q, p) has Chvátal-rank at most p
2 .

Consequence:

All facets of a web W k
n have Chvátal-rank at most k−1

2 .

There is no general upper bound on the Chvátal-rank, as for any k ≥ 1, there
are clique family facets (Q, 2k + 1) with k = min{2k + 1− k, k}.

Problem: Establish a lower bound on the Chvátal-rank!
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Chvátal-rank of clique family inequalities: Improved bound
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A.K. Wagler Talence, November 7+14, 2006 22 / 36
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Beyond clique family inequalities and quasi-line graphs

line 

fuzzy circ.int.

web

semi−line 

quasi−line

odd hole

< 3

< 2

odd antihole

distance c−f

claw−freeclique family inequalities
do not suffice

α

α

A graph is distance claw-free if, for every of its nodes v , neither N(v) nor N2(v)
contains a stable set of size 3.
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More complex facets for general claw-free graphs

There are claw-free graphs whose stable set polytopes admit facets neither
induced by cliques nor clique families:

Three Examples

 
x(  ) + 2x(  ) = 3 x(  ) + 2x(  ) + 3x(  ) = 4

 
x(  ) + 2x(  ) = 2

 
x(  ) + 2x(  ) = 

 
x(  ) + 1x(  ) = 1 40

5−wheel wedge graph G3

(Q,3) with r=1 yields(Q,3) with r=   yields more than two non−zero

coefficients required

2
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The graphs with stability number two

Theorem (Cook 1987)

The stable set polytope of any graph G with α(G ) ≤ 2 is entirely described by

trivial inequalities:

xv ≥ 0 ∀v ∈ V (G )

clique neighborhood inequalities F(Q):

2x(Q) + 1x(N ′(Q)) ≤ 2 for all cliques Q where N ′(Q) = {v : Q ⊆ N(v)}

and F(Q) is a facet iff N ′(Q) has in G no bipartite component.

v

Q N ′(Q)

maximal ∅
{v} C5

∅ V (G )
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The graphs with stability number at least four

A connected claw-free graph G with α(G ) ≥ 4

is either fuzzy circular interval or can be composed from linear interval strips
(Chudnovsky & Seymour 2005)

is quasi-line iff G does not contain a 5-wheel (Fouquet 1993)

has constraints associated with induced 5-wheels which can be lifted to more
general inequalities 1x(◦) + 2x(•) ≤ 2 (Stauffer 2005)

Conjecture (Stauffer 2005)

The stable set polytope of a claw-free but not fuzzy circular interval graph G with
α(G ) ≥ 4 is given by

nonnegativity constraints

rank constraints

lifted 5-wheel constraints

This would imply: all non-rank facets of a claw-free but not fuzzy circular interval
graph G with α(G ) 6= 3 are clique neighborhood constraints!
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The graphs with stability number three: Known Facets

Examples (Giles & Trotter 1981, Liebling et al. 2004)

 
x(  ) + 2x(  ) = 3 x(  ) + 2x(  ) + 3x(  ) = 4 x(  ) + 2x(  ) + 3x(  ) + 4x(  ) = 5

wedge fish in a netGiles & Trotter graph 

Observation: all the known examples of complicated facets for claw-free graphs
occur in the case α(G ) = 3, but they are not well-understood (so far)

Our goal: describe their structure!
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The graphs with stability number three: Wedges

A wedge is a claw-free graph G s.t. G has

a unique triangle ∆

a spanning tree T with 2 or 3 spokes of appropriate length

additional edges (to avoid claws in G )

Theorem (Giles & Trotter 1981)

Every wedge induces the facet

1x(◦) + 2x(•) ≤ 3

and its roots (= tight stable sets) correspond to the following cliques of G :

the |G | − 1 edges of the spanning tree T

the unique triangle ∆
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1. Extension: Co-spanning tree constraints

Definition

Consider a graph G with α(G ) = 3. A non-rank facet aT x ≤ b of STAB(G ) is a
co-spanning tree constraint if its roots correspond to the following cliques of G :

the |G | − 1 edges of a spanning tree T

one triangle ∆

Observation
the facets of wedges are of this type

all such facets are of the form 1x(◦) + 2x(•) ≤ 3

Thus: generalize further to obtain more than two and higher coefficients!
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2. Extension: Co-spanning forest constraints

Definition

Consider a graph G with α(G ) = 3. A non-rank facet aT x ≤ b of STAB(G ) is a
co-spanning forest constraint if its roots correspond to the following cliques of G :

the |G | − k edges of a spanning forest F with k tree-components

k triangles

 
x(  ) + 2x(  ) = 3 x(  ) + 2x(  ) + 3x(  ) + 4x(  ) = 5

fish in a netnew example
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3. Extension: Co-spanning 1-forest constraints

2x(  ) + 3x(  ) + 4x(  ) + 5x(  ) + 6x(  ) = 8x(  ) + 2x(  ) + 3x(  ) = 4

fish in a net with bubbleGiles & Trotter graph 

.

. .

.

Definition

Consider a graph G with α(G ) = 3. A non-rank facet aT x ≤ b of STAB(G ) is a
co-spanning 1-forest constraint if its roots correspond in G to:

the |G | − k edges of a spanning 1-forest F consisting of
some odd 1-trees and k trees as components

k triangles
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The graphs with stability number three: The Description

Theorem (Pêcher, W. 2006)

If α(G ) = 3, then all non-rank, non-complete join facets aT x ≤ b are

co-spanning forest constraints if b is odd;

co-spanning 1-forest constraints if b is even.

x(  ) + 2x(  ) + 3x(  ) + 4x(  ) + 5x(  ) + 6x(  ) = 72x(  ) + 3x(  ) + 4x(  ) = 6

.
..

.

Theorem (Pêcher, W. 2006)

In the stable set polytope of a claw-free graph G with α(G ) ≤ 3,
every non-rank facet is a co-spanning 1-forest constraint.
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The types of non-rank facets for claw-free graphs

Combine the results/conjectures on non-rank facets for claw-free graphs G with

α(G ) = 2 (Cook 1987)

α(G ) = 3 (Pêcher, W. 2006)

α(G ) ≥ 4 (Stauffer 2005)

Conjecture (Pêcher, W. 2006)

A non-rank facet associated with a claw-free graph G is a

clique neighborhood constraint if α(G ) = 2

co-spanning 1-forest constraint if α(G ) = 3

clique family inequality or a clique neighborhood constraint if α(G ) ≥ 4

Conjecture (Pêcher, W. 2006)

A non-rank facet associated with a claw-free graph G is a

clique family inequality if G is quasi-line,

co-spanning 1-forest constraint otherwise.
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α(G ) = 3 (Pêcher, W. 2006)

α(G ) ≥ 4 (Stauffer 2005)

Conjecture (Pêcher, W. 2006)
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Types of facet-defining subgraphs

Conjecture (Pêcher, W. 2006)

All non-rank facets of the stable set polytope of claw-free graphs rely on

odd antiwheels (clique neighborhood constraints),

co-spanning 1-forests (co-spanning 1-forest constraints),

prime webs (clique family inequalities).

Conjecture (Pêcher & W. 2006)

for non-clique facets of the stable set polytope of quasi-line graphs:

quasi−line

semi−line fuzzy circ.int.

line web

odd hole

line graph
based

rank facets

web−
based
facets
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