A Survey on Results for the Stable Set Polytope of Claw-Free Graphs

Annegret K. Wagler

Institute for Mathematical Optimization (IMO) Otto-von-Guericke-Universität Magdeburg Germany

Seminar, LaBRI

November 7+14, 2006

- 2 About rank constraints
- 3 From matchings to clique family inequalities
- 4 The Chvátal-rank of clique family inequalities
- 5 Beyond clique family inequalities and quasi-line graphs
- 6 Some conjectures for claw-free graphs

- 2 About rank constraints
- 3 From matchings to clique family inequalities
- 4 The Chvátal-rank of clique family inequalities
- 5 Beyond clique family inequalities and quasi-line graphs
- Some conjectures for claw-free graphs

The stable set problem

Stable set Sset of pairwise non-adjacent nodes of a graph G

Stable set problem

determine a stable set of maximum cardinality or weight in a graph G

Problem (Grötschel, Lovász & Schrijver 1988)

Consider the stable set polytope

$$\mathsf{STAB}(G) = \mathsf{conv}\{\chi^{S} \in \{0,1\}^{|G|} : S \subseteq G \text{ stable set}\}$$

and find a representation

$$STAB(G) = \{x \in \mathbf{R}^{|G|}_+ : Ax \le b\}$$

via a facet-defining system in order to compute the stability number

$$\alpha(G, c) = \max c^T x, x \in \mathrm{STAB}(G)$$

as a linear program.

The stable set problem for claw-free graphs is "asymmetric" as it

can be solved in polynomial time by combinatorial algorithms of

- Minty (1980)
- Sbihi (1980)
- Nakamura and Tamura (2001)

but is not under control from the polyhedral point of view as

- there can occur arbitrarily complicated facets and
- even no conjecture was at hand (so far!)

→ Ξ →

The stable set problem for claw-free graphs is "asymmetric" as it

can be solved in polynomial time by combinatorial algorithms of

- Minty (1980)
- Sbihi (1980)
- Nakamura and Tamura (2001)

but is not under control from the polyhedral point of view as

- there can occur arbitrarily complicated facets and
- even no conjecture was at hand (so far!)

The stable set problem for claw-free graphs is "asymmetric" as it

can be solved in polynomial time by combinatorial algorithms of

- Minty (1980)
- Sbihi (1980)
- Nakamura and Tamura (2001)

but is not under control from the polyhedral point of view as

- there can occur arbitrarily complicated facets and
- even no conjecture was at hand (so far!)

Clique constraints and perfect graphs

Clique constraints:

$$x(Q) = \sum_{i \in Q} x_i \leq 1$$

are valid inequalities for all cliques $Q \subseteq G$ and define facets iff Q is maximal

Clique constraint stable set polytope: $QSTAB(G) = \{x \in \mathbf{R}^{|G|}_+ : x(Q) \le 1 \text{ for } Q \subseteq G \text{ clique} \}$

Theorem (Chvátal 1975, Padberg 1974)

STAB(G) = QSTAB(G) if and only if G is perfect.

Thus: Additional facets are required for any imperfect graph G since

 $\operatorname{STAB}(G) \subset \operatorname{QSTAB}(G)$

Goal: Consider appropriate generalizations of clique constraints, namely, rank constraints and clique family inequalities

Clique constraints and perfect graphs

Clique constraints:

$$x(Q) = \sum_{i \in Q} x_i \leq 1$$

are valid inequalities for all cliques $Q \subseteq G$ and define facets iff Q is maximal

Clique constraint stable set polytope: $QSTAB(G) = \{x \in \mathbf{R}^{|G|}_+ : x(Q) \le 1 \text{ for } Q \subseteq G \text{ clique} \}$

Theorem (Chvátal 1975, Padberg 1974)

STAB(G) = QSTAB(G) if and only if G is perfect.

Thus: Additional facets are required for any imperfect graph G since

 $\operatorname{STAB}(G) \subset \operatorname{QSTAB}(G)$

Goal: Consider appropriate generalizations of clique constraints, namely, rank constraints and clique family inequalities

2 About rank constraints

- From matchings to clique family inequalities
- 4 The Chvátal-rank of clique family inequalities
- 5 Beyond clique family inequalities and quasi-line graphs
- Some conjectures for claw-free graphs

Rank constraints and rank-perfect graphs

Rank constraints:

$$x(G') = \sum_{i \in G'} x_i \leq \alpha(G')$$

are obviously valid inequalities for arbitrary induced subgraphs $G'\subseteq G$

Definition (W. 2000)

A graph G is rank-perfect iff STAB(G) = { $x \in \mathbf{R}^{|G|}_+ : x(G') \le \alpha(G'), G' \subseteq G$ }.

Examples of rank-perfect graphs:

- perfect graphs
- t-perfect and h-perfect graphs (by definition)
- line graphs (Edmonds 1965)
- complements of webs and of fuzzy circular interval graphs (W. 2002, 2004)
- semi-line graphs (Chudnovsky & Seymour 2004)

4 11 1 4 11 1

Rank constraints and rank-perfect graphs

Rank constraints:

$$x(G') = \sum_{i \in G'} x_i \leq \alpha(G')$$

are obviously valid inequalities for arbitrary induced subgraphs $G'\subseteq G$

Definition (W. 2000)

A graph G is rank-perfect iff STAB(G) = { $x \in \mathbf{R}^{|G|}_+ : x(G') \le \alpha(G'), G' \subseteq G$ }.

Examples of rank-perfect graphs:

- perfect graphs
- t-perfect and h-perfect graphs (by definition)
- line graphs (Edmonds 1965)
- complements of webs and of fuzzy circular interval graphs (W. 2002, 2004)
- semi-line graphs (Chudnovsky & Seymour 2004)

Definitions and inclusions of the studied graph classes

Theorem (Galluccio & Sassano 1997)

All rank facets of the stable set polytope of claw-free graphs can be obtained by means of standard techniques from

- cliques,
- line graphs of 2-connected hypomatchable graphs,
- partitionable webs $W_{\alpha\omega+1}^{\omega-1}$.

A graph H is **hypomatchable** if H - v has a perfect matching for all nodes v.

Problem: What about the non-rank facets?

Theorem (Galluccio & Sassano 1997)

All rank facets of the stable set polytope of claw-free graphs can be obtained by means of standard techniques from

- cliques,
- line graphs of 2-connected hypomatchable graphs,
- partitionable webs $W_{\alpha\omega+1}^{\omega-1}$.

A graph H is **hypomatchable** if H - v has a perfect matching for all nodes v.

Problem: What about the non-rank facets?

2 About rank constraints

From matchings to clique family inequalities

- 4 The Chvátal-rank of clique family inequalities
- 5 Beyond clique family inequalities and quasi-line graphs
- Some conjectures for claw-free graphs

Edmonds' description of matching polytopes

Theorem (Edmonds 1965)

The matching polytope $M(G) = \operatorname{conv}\{\chi^M : M \subseteq E(G) \text{ matching}\}$ is given by

• trivial inequalities:

 $x_e \geq 0 \,\,\forall \,\, ext{edges} \,\, e \in E(G)$

• edge star inequalities:

 $x(\delta(v)) \leq 1 \ \forall v \in V(G), \ \delta(v) = \{e \in E(G) : e \text{ incident to } v\}$

odd set inequalities:

 $x(E[H]) \leq \frac{|H|-1}{2} \ \forall H \subseteq V(G) \ \text{with} \ |H| \geq 3 \ \text{odd}$

Theorem (Edmonds & Pulleyblank 1974)

An odd set inequality defines a **facet** if H is 2-connected, hypomatchable.

Edmonds' description of matching polytopes

Theorem (Edmonds 1965)

The matching polytope $M(G) = \operatorname{conv}\{\chi^M : M \subseteq E(G) \text{ matching}\}$ is given by

• trivial inequalities:

 $x_e \geq 0 \,\,\forall \,\, ext{edges} \,\, e \in E(G)$

• edge star inequalities:

 $x(\delta(v)) \leq 1 \ \forall v \in V(G), \ \delta(v) = \{e \in E(G) : e \text{ incident to } v\}$

odd set inequalities:

 $x(E[H]) \leq \frac{|H|-1}{2} \ \forall H \subseteq V(G) \ \text{with} \ |H| \geq 3 \ \text{odd}$

Theorem (Edmonds & Pulleyblank 1974)

An odd set inequality defines a facet if H is 2-connected, hypomatchable.

A.K. Wagler

Consequences for stable set polytopes of line graphs

Line graph L(F): (non)adjacent edges of F become (non)adjacent nodes of L(F)

Corollary

For any line graph G = L(F), its stable set polytope STAB(G) is given by

• trivial inequalities:

 $x_v \geq 0 \,\, \forall \mathsf{nodes} \,\, v \in V(G)$

• clique inequalities:

 $x(Q) \leq 1 \; \forall \mathsf{cliques} \; Q \in G$

• rank inequalities:

 $x(L(H)) \leq \left| \frac{|H|}{2} \right| \ \forall H \subseteq F$ 2-connected, hypomatchable

Consequences for stable set polytopes of line graphs

Line graph L(F): (non)adjacent edges of F become (non)adjacent nodes of L(F)

Corollary

For any line graph G = L(F), its stable set polytope STAB(G) is given by

• trivial inequalities:

 $x_v \geq 0 \, \forall nodes \, v \in V(G)$

• clique inequalities:

 $x(Q) \leq 1 \; \forall \mathsf{cliques} \; Q \in G$

• rank inequalities:

 $x(L(H)) \leq \left\lfloor \frac{|H|}{2} \right\rfloor \ \forall H \subseteq F$ 2-connected, hypomatchable

Extending odd set inequalities to clique family inequalities

Definition: clique family inequality (Q, p) (CFI)

Let $\mathcal Q$ be a family of \geq 3 maximal cliques, $p\leq |\mathcal Q|$ a parameter, and

$$I(\mathcal{Q}, p) = \{ v \in V : |\{Q \in \mathcal{Q} : v \in Q\}| \ge p \}$$

$$O(\mathcal{Q}, p) = \{ v \in V : |\{Q \in \mathcal{Q} : v \in Q\}| = p - 1 \}$$

Then, for $r = |Q| \mod p, r > 0$, define the CFI (Q, p) as

$$(p-r)\sum_{v\in I(\mathcal{Q},p)}x_v+(p-r-1)\sum_{v\in O(\mathcal{Q},p)}x_v\leq (p-r)\left\lfloor \frac{|\mathcal{Q}|}{p}
ight
ceil$$

Example: The CFI (Q,2) of STAB(L(F)) is $1 x(\bullet) + 0 x(\odot) \le 2$

The stable set polytope of quasi-line graphs

For which graphs do clique family inequalities suffice?

Ben Rebea Conjecture (1980)

The stable set polytope of any quasi-line graph is given by three types of constraints:

- nonnegativity constraints,
- clique constraints,
- clique family inequalities.

Conjecture verified for:

- line graphs (Edmonds 1965/Oriolo 2003)
- semi-line graphs (Chudnovsky and Seymour 2004)
- fuzzy circular interval graphs/quasi-line graphs (Eisenbrand, Oriolo, Stauffer, and Ventura 2005)

The stable set polytope of quasi-line graphs

For which graphs do clique family inequalities suffice?

Ben Rebea Conjecture (1980)

The stable set polytope of any quasi-line graph is given by three types of constraints:

- nonnegativity constraints,
- clique constraints,
- clique family inequalities.

Conjecture verified for:

- line graphs (Edmonds 1965/Oriolo 2003)
- semi-line graphs (Chudnovsky and Seymour 2004)
- fuzzy circular interval graphs/quasi-line graphs (Eisenbrand, Oriolo, Stauffer, and Ventura 2005)

Facet-defining clique family inequalities

Which clique family inequalities are essential?

• line graphs:

 $(\mathcal{Q},2)$ with $I(\mathcal{Q},2)$ line graph of a 2-connected hypomatchable graph

• semi-line graphs:

clique family inequalities ($\mathcal{Q},2)$ with $|\mathcal{Q}|$ odd

Conjecture (Pêcher & W. 2004), Theorem (Stauffer 2005)

The stable set polytope of any web W_n^k admits only the following types of facets:

- nonnegativity constraints,
- clique constraints,
- full rank constraint $x(W_n^k) \leq \alpha(W_n^k)$,
- clique family inequalities (Q, k'+1) associated with proper subwebs $W_{n'}^{k'}$.

Conjecture extended to fuzzy circular interval graphs (Pêcher & W. 2006)

• if true: webs would be crucial for all rank and non-rank facets of fuzzy circular interval graphs

イロト イポト イヨト イヨト

Facet-defining clique family inequalities

Which clique family inequalities are essential?

• line graphs:

 $(\mathcal{Q},2)$ with $I(\mathcal{Q},2)$ line graph of a 2-connected hypomatchable graph

• semi-line graphs:

clique family inequalities ($\mathcal{Q},2)$ with $|\mathcal{Q}|$ odd

Conjecture (Pêcher & W. 2004), Theorem (Stauffer 2005)

The stable set polytope of any **web** W_n^k admits only the following types of facets:

- nonnegativity constraints,
- clique constraints,
- full rank constraint $x(W_n^k) \leq \alpha(W_n^k)$,
- clique family inequalities $(\mathcal{Q}, k'+1)$ associated with proper subwebs $W_{n'}^{k'}$.

Conjecture extended to fuzzy circular interval graphs (Pêcher & W. 2006)

• if true: webs would be crucial for all rank and non-rank facets of fuzzy circular interval graphs

(日) (同) (三) (三)

Facet-defining clique family inequalities

Which clique family inequalities are essential?

• line graphs:

 $(\mathcal{Q},2)$ with $I(\mathcal{Q},2)$ line graph of a 2-connected hypomatchable graph

• semi-line graphs:

clique family inequalities (Q, 2) with |Q| odd

Conjecture (Pêcher & W. 2004), Theorem (Stauffer 2005)

The stable set polytope of any **web** W_n^k admits only the following types of facets:

- nonnegativity constraints,
- clique constraints,
- full rank constraint $x(W_n^k) \leq \alpha(W_n^k)$,
- clique family inequalities $(\mathcal{Q}, k'+1)$ associated with proper subwebs $W_{n'}^{k'}$.

Conjecture extended to fuzzy circular interval graphs (Pêcher & W. 2006)

• if true: webs would be crucial for all rank and non-rank facets of fuzzy circular interval graphs

2 About rank constraints

3 From matchings to clique family inequalities

The Chvátal-rank of clique family inequalities

Beyond clique family inequalities and quasi-line graphs

Some conjectures for claw-free graphs

The Chvátal-rank of inequalities and polytopes

Consider a polyhedron $P \subseteq \mathbb{R}^n$ and $P_I = \operatorname{conv}\{x \in \mathbb{Z}^n : x \in P\}$.

For any valid inequality $\sum a_i x_i \leq b$ of P with $a_i \in \mathbb{Z}$, the inequality

 $\sum a_i x_i \leq \lfloor b \rfloor$

is a **Chvátal-Gomory cut** for P and valid for P_I .

The set P' of points satisfying all such Chvátal-Gomory cuts for P is its **Chvátal-closure**. Let $P^{t+1} = (P^t)'$, then

$$P_I \subseteq P^t \subseteq P^0 = P$$

holds for every t.

Definition

- An inequality $\sum a_i x_i \leq b$ has Chvátal-rank at most t if it is valid for P^t .
- The smallest t with $P^t = P_I$ is the Chvátal-rank of P.

Odd set inequalities and the fractional matching polytope have Chvátal-rank 1.

The Chvátal-rank of inequalities and polytopes

Consider a polyhedron $P \subseteq \mathbb{R}^n$ and $P_I = \operatorname{conv}\{x \in \mathbb{Z}^n : x \in P\}$.

For any valid inequality $\sum a_i x_i \leq b$ of P with $a_i \in \mathbb{Z}$, the inequality

 $\sum a_i x_i \leq \lfloor b \rfloor$

is a **Chvátal-Gomory cut** for P and valid for P_I .

The set P' of points satisfying all such Chvátal-Gomory cuts for P is its **Chvátal-closure**. Let $P^{t+1} = (P^t)'$, then

$$P_I \subseteq P^t \subseteq P^0 = P$$

holds for every t.

Definition

- An inequality $\sum a_i x_i \leq b$ has Chvátal-rank at most t if it is valid for P^t .
- The smallest t with $P^t = P_I$ is the Chvátal-rank of P.

Odd set inequalities and the fractional matching polytope have Chvátal-rank 1.

Edmonds' Conjecture

Conjecture (Edmonds 1973)

Claw-free graphs have Chvátal-rank 1.

The conjecture is **true** for line graphs (as odd set inequalities and, therefore, P = QSTAB(G) for any line graph G have Chvátal-rank 1).

Counterxample (Giles & Trotter 1981, Oriolo 2003)

The fuzzy circular interval graph obtained by joining the webs W_{37}^6 and W_{37}^7 in a certain way has a clique family facet (Q, 8). This clique family inequality (Q, 8) has **Chvátal-rank at least 2**.

Thus, the conjecture is **not true** in general!

Problem

- Is the conjecture true for other classes of claw-free graphs?
- Is there an upper bound for the Chvátal-rank of quasi-line graphs?

Edmonds' Conjecture

Conjecture (Edmonds 1973)

Claw-free graphs have Chvátal-rank 1.

The conjecture is **true** for line graphs (as odd set inequalities and, therefore, P = QSTAB(G) for any line graph G have Chvátal-rank 1).

Counterxample (Giles & Trotter 1981, Oriolo 2003)

The fuzzy circular interval graph obtained by joining the webs W_{37}^6 and W_{37}^7 in a certain way has a clique family facet (Q, 8). This clique family inequality (Q, 8) has Chvátal-rank at least 2.

Thus, the conjecture is not true in general!

Problem

- Is the conjecture true for other classes of claw-free graphs?
- Is there an upper bound for the Chvátal-rank of quasi-line graphs?

Edmonds' Conjecture

Conjecture (Edmonds 1973)

Claw-free graphs have Chvátal-rank 1.

The conjecture is **true** for line graphs (as odd set inequalities and, therefore, P = QSTAB(G) for any line graph G have Chvátal-rank 1).

Counterxample (Giles & Trotter 1981, Oriolo 2003)

The fuzzy circular interval graph obtained by joining the webs W_{37}^6 and W_{37}^7 in a certain way has a clique family facet (Q, 8). This clique family inequality (Q, 8) has Chvátal-rank at least 2.

Thus, the conjecture is not true in general!

Problem

- Is the conjecture true for other classes of claw-free graphs?
- Is there an upper bound for the Chvátal-rank of quasi-line graphs?

Let (Q, p) be a clique family inequality and let $r = |Q| \pmod{p}$. For every $1 \le i \le p - r$, the inequality

$$i\sum_{v\in I(\mathcal{Q},p)}x_v+(i-1)\sum_{v\in O(\mathcal{Q},p)}x_v\leq i\left\lfloor\frac{|\mathcal{Q}|}{p}\right\rfloor$$

has Chvátal-rank at most *i*.

Remark: gives an alternative proof for the validity of clique family inequalities, involving only standard rounding arguments.

Corollary (Pêcher & W. 2005)

- A clique family inequality (\mathcal{Q}, p) has Chvátal-rank at most p r.
- Every rank clique family inequality has Chvátal-rank 1.

Consequence: Semi-line graphs have Chvátal-rank 1, thus Edmonds' conjecture is true for semi-line graphs.

(日) (同) (日) (日)

Let (Q, p) be a clique family inequality and let $r = |Q| \pmod{p}$. For every $1 \le i \le p - r$, the inequality

$$i\sum_{v\in I(\mathcal{Q},p)}x_v+(i-1)\sum_{v\in O(\mathcal{Q},p)}x_v\leq i\left\lfloor\frac{|\mathcal{Q}|}{p}\right\rfloor$$

has Chvátal-rank at most *i*.

Remark: gives an alternative proof for the validity of clique family inequalities, involving only standard rounding arguments.

Corollary (Pêcher & W. 2005)

- A clique family inequality (\mathcal{Q}, p) has Chvátal-rank at most p r.
- Every rank clique family inequality has Chvátal-rank 1.

Consequence: Semi-line graphs have Chvátal-rank 1, thus Edmonds' conjecture is true for semi-line graphs.

(日) (同) (三) (三)

Let (Q, p) be a clique family inequality and let $r = |Q| \pmod{p}$. For every $1 \le i \le p - r$, the inequality

$$i\sum_{v\in I(\mathcal{Q},p)}x_v+(i-1)\sum_{v\in O(\mathcal{Q},p)}x_v\leq i\left\lfloor\frac{|\mathcal{Q}|}{p}\right\rfloor$$

has Chvátal-rank at most *i*.

Remark: gives an alternative proof for the validity of clique family inequalities, involving only standard rounding arguments.

Corollary (Pêcher & W. 2005)

- A clique family inequality (Q, p) has Chvátal-rank at most p r.
- Every rank clique family inequality has Chvátal-rank 1.

Consequence: Semi-line graphs have Chvátal-rank 1, thus Edmonds' conjecture is true for semi-line graphs.

(日) (同) (日) (日)

Talence, November 7+14, 2006

20 / 36

A.K. Wagler

Chvátal-rank of clique family inequalities: Examples

Example (Giles & Trotter 1981)

For any $k \ge 1$, the graph $G^k = W_n^{k+1} \times W_n^k$ has a clique family facet (Q, k+2) $(k+1)x(W_n^{k+1}) + kx(W_n^k) \le (k+1) \left\lfloor \frac{n}{k+2} \right\rfloor$

where Q is of size n = 2k(k+2) + 1.

Example (Liebling, Oriolo, Spille, and Stauffer 2004)

For any $a \ge 1$, the web $W^{2(a+2)}_{(2a+3)^2}$ has a clique family facet $(\mathcal{Q}, a+2)$ $(a+1)x(I(\mathcal{Q}, a+2)) + ax(O(\mathcal{Q}, a+2)) \le (a+1) \left\lfloor \frac{|\mathcal{Q}|}{a+2} \right\rfloor$ where \mathcal{Q} is of size (a+2)(2a+3).

Chvátal-rank of clique family inequalities: Examples

Example (Giles & Trotter 1981)

For any $k \ge 1$, the graph $G^k = W_n^{k+1} \times W_n^k$ has a clique family facet (Q, k+2) $(k+1)x(W_n^{k+1}) + kx(W_n^k) \le (k+1) \left\lfloor \frac{n}{k+2} \right\rfloor$

where Q is of size n = 2k(k+2) + 1.

Example (Liebling, Oriolo, Spille, and Stauffer 2004)

For any $a \ge 1$, the web $W_{(2a+3)^2}^{2(a+2)}$ has a clique family facet $(\mathcal{Q}, a+2)$ $(a+1)x(I(\mathcal{Q}, a+2)) + ax(O(\mathcal{Q}, a+2)) \le (a+1) \lfloor \frac{|\mathcal{Q}|}{a+2} \rfloor$ where \mathcal{Q} is of size (a+2)(2a+3).

A clique family inequality (Q, p) with $r = |Q| \pmod{p}$ has Chvátal-rank **at most** $\min\{r, p - r\}$

Example: The above clique family inequalities with arbitrarily high coefficients have Chvátal-rank **one** as r = 1 holds in both cases.

Corollary (Pêcher & W. 2005)

A clique family inequality (Q, p) has Chvátal-rank at most $\frac{p}{2}$.

Consequence:

- All facets of a web W_n^k have Chvátal-rank at most $\frac{k-1}{2}$.
- There is no general upper bound on the Chvátal-rank, as for any k ≥ 1, there are clique family facets (Q, 2k + 1) with k = min{2k + 1 − k, k}.

A clique family inequality (Q, p) with $r = |Q| \pmod{p}$ has Chvátal-rank **at most** $\min\{r, p - r\}$

Example: The above clique family inequalities with arbitrarily high coefficients have Chvátal-rank **one** as r = 1 holds in both cases.

Corollary (Pêcher & W. 2005)

A clique family inequality (Q, p) has Chvátal-rank at most $\frac{p}{2}$.

Consequence:

- All facets of a web W_n^k have Chvátal-rank at most $\frac{k-1}{2}$.
- There is no general upper bound on the Chvátal-rank, as for any k ≥ 1, there are clique family facets (Q, 2k + 1) with k = min{2k + 1 − k, k}.

A clique family inequality (Q, p) with $r = |Q| \pmod{p}$ has Chvátal-rank **at most** $\min\{r, p - r\}$

Example: The above clique family inequalities with arbitrarily high coefficients have Chvátal-rank **one** as r = 1 holds in both cases.

Corollary (Pêcher & W. 2005)

A clique family inequality (Q, p) has Chvátal-rank at most $\frac{p}{2}$.

Consequence:

- All facets of a web W_n^k have Chvátal-rank at most $\frac{k-1}{2}$.
- There is no general upper bound on the Chvátal-rank, as for any k ≥ 1, there are clique family facets (Q, 2k + 1) with k = min{2k + 1 − k, k}.

A clique family inequality (Q, p) with $r = |Q| \pmod{p}$ has Chvátal-rank **at most** $\min\{r, p - r\}$

Example: The above clique family inequalities with arbitrarily high coefficients have Chvátal-rank **one** as r = 1 holds in both cases.

Corollary (Pêcher & W. 2005)

A clique family inequality (Q, p) has Chvátal-rank at most $\frac{p}{2}$.

Consequence:

- All facets of a web W_n^k have Chvátal-rank at most $\frac{k-1}{2}$.
- There is no general upper bound on the Chvátal-rank, as for any k ≥ 1, there are clique family facets (Q, 2k + 1) with k = min{2k + 1 − k, k}.

- 2 About rank constraints
- 3 From matchings to clique family inequalities
 - 4 The Chvátal-rank of clique family inequalities

5 Beyond clique family inequalities and quasi-line graphs

Beyond clique family inequalities and quasi-line graphs

A graph is **distance claw-free** if, for every of its nodes v, neither N(v) nor $N_2(v)$ contains a stable set of size 3.

A.K. Wagler

More complex facets for general claw-free graphs

There are claw-free graphs whose stable set polytopes admit facets neither induced by cliques nor clique families:

Theorem (Cook 1987)

The stable set polytope of any graph G with $\alpha(G) \leq 2$ is entirely described by

• trivial inequalities:

 $x_v \geq 0 \ \forall v \in V(G)$

• clique neighborhood inequalities F(Q):

 $2x(Q) + 1x(N'(Q)) \le 2$ for all cliques Q where $N'(Q) = \{v : Q \subseteq N(v)\}$

and F(Q) is a facet iff N'(Q) has in \overline{G} no bipartite component.

The graphs with stability number at least four

A connected claw-free graph G with $\alpha(G) \ge 4$

- is either fuzzy circular interval or can be composed from linear interval strips (Chudnovsky & Seymour 2005)
- is quasi-line iff G does not contain a 5-wheel (Fouquet 1993)
- has constraints associated with induced 5-wheels which can be lifted to more general inequalities 1x(○) + 2x(●) ≤ 2 (Stauffer 2005)

Conjecture (Stauffer 2005)

The stable set polytope of a claw-free but not fuzzy circular interval graph G with $\alpha(G) \ge 4$ is given by

- nonnegativity constraints
- rank constraints
- lifted 5-wheel constraints

This would imply: all non-rank facets of a claw-free but not fuzzy circular interval graph G with $\alpha(G) \neq 3$ are **clique neighborhood constraints**!

イロト イポト イヨト イヨト

The graphs with stability number at least four

A connected claw-free graph G with $\alpha(G) \ge 4$

- is either fuzzy circular interval or can be composed from linear interval strips (Chudnovsky & Seymour 2005)
- is quasi-line iff G does not contain a 5-wheel (Fouquet 1993)
- has constraints associated with induced 5-wheels which can be lifted to more general inequalities 1x(○) + 2x(●) ≤ 2 (Stauffer 2005)

Conjecture (Stauffer 2005)

The stable set polytope of a claw-free but not fuzzy circular interval graph G with $\alpha(G) \ge 4$ is given by

- nonnegativity constraints
- rank constraints
- lifted 5-wheel constraints

This would imply: all non-rank facets of a claw-free but not fuzzy circular interval graph G with $\alpha(G) \neq 3$ are clique neighborhood constraints!

(日) (同) (三) (三)

The graphs with stability number three: Known Facets

Observation: all the known examples of complicated facets for claw-free graphs occur in the case $\alpha(G) = 3$, but they are not well-understood (so far)

Our goal: describe their structure!

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The graphs with stability number three: Known Facets

Observation: all the known examples of complicated facets for claw-free graphs occur in the case $\alpha(G) = 3$, but they are not well-understood (so far)

Our goal: describe their structure!

A.K. Wagler

The graphs with stability number three: Wedges

A wedge is a claw-free graph G s.t. \overline{G} has

- ullet a unique triangle Δ
- a spanning tree T with 2 or 3 spokes of appropriate length
- additional edges (to avoid claws in G)

Theorem (Giles & Trotter 1981)

Every wedge induces the facet

$$1x(\circ) + 2x(\bullet) \leq 3$$

and its **roots** (= tight stable sets) correspond to the following cliques of \overline{G} :

- the |G| 1 edges of the spanning tree T
- the unique triangle Δ

The graphs with stability number three: Wedges

A wedge is a claw-free graph G s.t. \overline{G} has

- ullet a unique triangle Δ
- a spanning tree T with 2 or 3 spokes of appropriate length
- additional edges (to avoid claws in G)

Theorem (Giles & Trotter 1981)

Every wedge induces the facet

$$1x(\circ) + 2x(\bullet) \leq 3$$

and its **roots** (= tight stable sets) correspond to the following cliques of \overline{G} :

- the |G| 1 edges of the spanning tree T
- ${\, \bullet \,}$ the unique triangle Δ

Definition

Consider a graph G with $\alpha(G) = 3$. A non-rank facet $a^T x \leq b$ of STAB(G) is a co-spanning tree constraint if its roots correspond to the following cliques of \overline{G} :

- the |G| 1 edges of a spanning tree T
- ${\scriptstyle \bullet}\,$ one triangle Δ

Observation

- the facets of wedges are of this type
- all such facets are of the form $1x(\circ) + 2x(\bullet) \leq 3$

Thus: generalize further to obtain more than two and higher coefficients!

Definition

Consider a graph G with $\alpha(G) = 3$. A non-rank facet $a^T x \le b$ of STAB(G) is a co-spanning tree constraint if its roots correspond to the following cliques of \overline{G} :

- the |G| 1 edges of a spanning tree T
- ${\scriptstyle \bullet}\,$ one triangle Δ

Observation

- the facets of wedges are of this type
- all such facets are of the form $1x(\circ) + 2x(\bullet) \leq 3$

Thus: generalize further to obtain more than two and higher coefficients!

2. Extension: Co-spanning forest constraints

Definition

Consider a graph G with $\alpha(G) = 3$. A non-rank facet $a^T x \leq b$ of STAB(G) is a co-spanning forest constraint if its roots correspond to the following cliques of \overline{G} :

- the |G| k edges of a spanning **forest** F with k tree-components
- k triangles

3. Extension: Co-spanning 1-forest constraints

$$x(\bigcirc) + 2x(\bullet) + 3x(\bullet) \leq 4 \qquad \qquad 2x(\bullet) + 3x(\bullet) + 4x(\bullet) + 5x(\boxdot) + 6x(\boxdot \leq 8)$$

Definition

Consider a graph G with $\alpha(G) = 3$. A non-rank facet $a^T x \le b$ of STAB(G) is a co-spanning 1-forest constraint if its roots correspond in \overline{G} to:

- the |G| k edges of a spanning 1-forest F consisting of some odd 1-trees and k trees as components
- k triangles

The graphs with stability number three: The Description

Theorem (Pêcher, W. 2006)

If $\alpha(G) = 3$, then all non-rank, non-complete join facets $a^T x \leq b$ are

- co-spanning forest constraints if b is odd;
- co-spanning 1-forest constraints if b is even.

 $2x(\bigcirc) + 3x(\bullet) + 4x(\bullet) \leq 6$

 $x(\bigcirc) + 2x(\bullet) + 3x(\bullet) + 4x(\bigcirc) + 5x(\odot) + 6x(\bigcirc) \leq 7$

Theorem (Pêcher, W. 2006)

In the stable set polytope of a claw-free graph G with $\alpha(G) \leq 3$, every non-rank facet is a **co-spanning 1-forest constraint**.

The graphs with stability number three: The Description

Theorem (Pêcher, W. 2006)

If $\alpha(G) = 3$, then all non-rank, non-complete join facets $a^T x \leq b$ are

- co-spanning forest constraints if b is odd;
- co-spanning 1-forest constraints if b is even.

 $2x(\bigcirc) + 3x(\bullet) + 4x(\bullet) \leq 6$

 $x(\bigcirc) + 2x(\bullet) + 3x(\bullet) + 4x(\bullet) + 5x(\bullet) + 6x(\bullet) \leq 7$

Theorem (Pêcher, W. 2006)

In the stable set polytope of a claw-free graph G with $\alpha(G) \leq 3$, every non-rank facet is a **co-spanning 1-forest constraint**.

A.K. Wagler

2 About rank constraints

From matchings to clique family inequalities

The Chvátal-rank of clique family inequalities

Beyond clique family inequalities and quasi-line graphs

6 Some conjectures for claw-free graphs

The types of non-rank facets for claw-free graphs

Combine the results/conjectures on non-rank facets for claw-free graphs G with

- α(G) = 2 (Cook 1987)
- α(G) = 3 (Pêcher, W. 2006)
- α(G) ≥ 4 (Stauffer 2005)

Conjecture (Pêcher, W. 2006)

A non-rank facet associated with a claw-free graph G is a

- clique neighborhood constraint if $\alpha(G) = 2$
- co-spanning 1-forest constraint if $\alpha(G) = 3$
- clique family inequality or a clique neighborhood constraint if $\alpha(G) \ge 4$

Conjecture (Pêcher, W. 2006)

A non-rank facet associated with a claw-free graph G is a

- clique family inequality if G is quasi-line,
- co-spanning 1-forest constraint otherwise.

The types of non-rank facets for claw-free graphs

Combine the results/conjectures on non-rank facets for claw-free graphs G with

- α(G) = 2 (Cook 1987)
- α(G) = 3 (Pêcher, W. 2006)
- α(G) ≥ 4 (Stauffer 2005)

Conjecture (Pêcher, W. 2006)

A non-rank facet associated with a claw-free graph G is a

- clique neighborhood constraint if $\alpha(G) = 2$
- co-spanning 1-forest constraint if $\alpha(G) = 3$
- clique family inequality or a clique neighborhood constraint if $\alpha(G) \ge 4$

Conjecture (Pêcher, W. 2006)

A non-rank facet associated with a claw-free graph G is a

- clique family inequality if G is quasi-line,
- co-spanning 1-forest constraint otherwise.

Conjecture (Pêcher, W. 2006)

All non-rank facets of the stable set polytope of claw-free graphs rely on

- odd antiwheels (clique neighborhood constraints),
- co-spanning 1-forests (co-spanning 1-forest constraints),
- prime webs (clique family inequalities).

Conjecture (Pêcher & W. 2006)

for non-clique facets of the stable set polytope of quasi-line graphs:

