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© The stable set problem for claw-free graphs
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The stable set problem

Stable set S
set of pairwise non-adjacent nodes of a graph G

Stable set problem
determine a stable set of maximum cardinality or weight in a graph G

Problem (Grotschel, Lovasz & Schrijver 1988)
Consider the stable set polytope

STAB(G) = conv{x® € {0,1}I¢| : S C G stable set}
and find a representation

STAB(G) = {x e RI’' : Ax < b}

via a facet-defining system in order to compute the stability number
(G, c) = maxc'x,x € STAB(G)

as a linear program.
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The stable set problem for claw-free graphs

Definition

A graph G is claw-free if G does not contain Y as induced subgraph.

The stable set problem for claw-free graphs is “asymmetric”
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The stable set problem for claw-free graphs

Definition

A graph G is claw-free if G does not contain Y as induced subgraph.

The stable set problem for claw-free graphs is “asymmetric”

as it

can be solved in polynomial time by combinatorial algorithms of
e Minty (1980)
@ Sbihi (1980)
o Nakamura and Tamura (2001)

but is not under control from the polyhedral point of view as

@ there can occur arbitrarily complicated facets and

@ even no conjecture was at hand
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Clique constraints and perfect graphs

Clique constraints:
x(Q) = Z x <1
i€eQ
are valid inequalities for all cliques @ C G and define facets iff Q is maximal

Clique constraint stable set polytope:
QSTAB(G) = {x € RIE: x(Q) < 1 for Q C G clique}
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Clique constraints and perfect graphs

Clique constraints:
x(Q) = Z x <1
i€eQ
are valid inequalities for all cliques @ C G and define facets iff Q is maximal

Clique constraint stable set polytope:
QSTAB(G) = {x € RIE: x(Q) < 1 for Q C G clique}

Theorem (Chvatal 1975, Padberg 1974)

STAB(G) = QSTAB(G) if and only if G is perfect.

Thus: Additional facets are required for any imperfect graph G since
STAB(G) € QSTAB(G)

Goal: Consider appropriate generalizations of clique constraints, namely,
rank constraints and clique family inequalities
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© About rank constraints
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Rank constraints and rank-perfect graphs

Rank constraints:
x(G)=>_ x <a(G)
ieG’

are obviously valid inequalities for arbitrary induced subgraphs G’ C G

Definition (W. 2000)

A graph G is rank-perfect iff STAB(G) = {x € R|+G‘ :x(G") < a(G), G' C G}.
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Rank constraints and rank-perfect graphs

Rank constraints:
x(G)=>_ x <a(G)
ieG’

are obviously valid inequalities for arbitrary induced subgraphs G’ C G

Definition (W. 2000)

A graph G is rank-perfect iff STAB(G) = {x € R|+G‘ :x(G") < a(G), G' C G}.

Examples of rank-perfect graphs:
@ perfect graphs
o t-perfect and h-perfect graphs (by definition)
o line graphs (Edmonds 1965)
@ complements of webs and of fuzzy circular interval graphs (W. 2002, 2004)
@ semi-line graphs (Chudnovsky & Seymour 2004)
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Definitions and inclusions of the studied graph classes

claw—free

quasi-line

neighbors of every node )
. o split into two cliques line graph or a
quasi-line graph
which is not

fuzzy circular interval

A

fuzzy circ.int. semi-line

b
i

web adjacent edges

of root graph F to
adjacent nodes
of line graph L(F)

o
&
N

odd hole
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The rank facets of claw-free graphs

Theorem (Galluccio & Sassano 1997)
All rank facets of the stable set polytope of claw-free graphs can be obtained by
means of standard techniques from

o cliques,

o line graphs of 2-connected hypomatchable graphs,

@ partitionable webs W:;jl

A graph H is hypomatchable if H — v has a perfect matching for all nodes v.

A.K. Wagler
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The rank facets of claw-free graphs

Theorem (Galluccio & Sassano 1997)
All rank facets of the stable set polytope of claw-free graphs can be obtained by
means of standard techniques from

o cliques,

o line graphs of 2-connected hypomatchable graphs,

@ partitionable webs W:;jl

A graph H is hypomatchable if H — v has a perfect matching for all nodes v.

Problem: What about the non-rank facets?
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e From matchings to clique family inequalities
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Edmonds’ description of matching polytopes

Theorem (Edmonds 1965)

The matching polytope M(G) = conv{x" : M C E(G) matching} is given by
@ trivial inequalities:
Xe > 0V edges e € E(G)
@ edge star inequalities:
x(d(v)) <1Vv e V(G), §(v) = {e € E(G) : e incident to v}
@ odd set inequalities:
x(E[H]) < =2 wH C v(G) with |H| > 3 odd

edge star odd set
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Edmonds’ description of matching polytopes

Theorem (Edmonds 1965)

The matching polytope M(G) = conv{x" : M C E(G) matching} is given by
@ trivial inequalities:
Xe > 0V edges e € E(G)
@ edge star inequalities:
x(d(v)) <1Vv e V(G), §(v) = {e € E(G) : e incident to v}
@ odd set inequalities:
x(E[H]) < =2 wH C v(G) with |H| > 3 odd

edge star odd set

Theorem (Edmonds & Pulleyblank 1974)

An odd set inequality defines a facet if H is 2-connected, hypomatchable.
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Consequences for stable set polytopes of line graphs

Line graph L(F): (non)adjacent edges of F become (non)adjacent nodes of L(F)

matching E— stable set
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Consequences for stable set polytopes of line graphs

Line graph L(F): (non)adjacent edges of F become (non)adjacent nodes of L(F)

matching - . stable set

Corollary
For any line graph G = L(F), its stable set polytope STAB(G) is given by
@ trivial inequalities:
x, > 0 Vnodes v € V(G)
o clique inequalities:
x(Q) < 1 Vcliques Q € G
@ rank inequalities:
x(L(H)) < {@J VH C F 2-connected, hypomatchable

o’
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Extending odd set inequalities to clique family inequalities

i
oddsetinF " . clique family in L(F)
N

Definition: clique family inequality (Q, p) (CFI)

Let Q be a family of > 3 maximal cliques, p < |Q| a parameter, and

(Qp)={veV:{QReQ:veQ} >p}
0@Qp)={veV:{ReQ:veQ}=p-1}

Then, for r =|Q| mod p, r > 0, define the CFl (Q, p) as
(-1 3 mtp-r=1 3 x<(p=1) {@J

) ve0(2.p) &

Example: The CFI (Q,2) of STAB(L(F))is 1 x(®) + 0 x(0) <2
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The stable set polytope of quasi-line graphs

For which graphs do clique family inequalities suffice?

Ben Rebea Conjecture (1980)

The stable set polytope of any quasi-line graph is given by three types of
constraints:

@ nonnegativity constraints,
o clique constraints,

@ clique family inequalities.
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The stable set polytope of quasi-line graphs

For which graphs do clique family inequalities suffice?

Ben Rebea Conjecture (1980)

The stable set polytope of any quasi-line graph is given by three types of
constraints:

@ nonnegativity constraints,

o clique constraints,

@ clique family inequalities.

Conjecture verified for:
@ line graphs (Edmonds 1965/Oriolo 2003)
@ semi-line graphs (Chudnovsky and Seymour 2004)

e fuzzy circular interval graphs/quasi-line graphs
(Eisenbrand, Oriolo, Stauffer, and Ventura 2005)

A.K. Wagler Talence, November 7414, 2006 15/ 36



Facet-defining clique family inequalities

Which clique family inequalities are essential?
o line graphs:
(Q,2) with /(Q,2) line graph of a 2-connected hypomatchable graph
@ semi-line graphs:
clique family inequalities (Q, 2) with |Q| odd

A.K. Wagler Talence, November 7+14, 2006 16 / 36



Facet-defining clique family inequalities

Which clique family inequalities are essential?
o line graphs:
(Q,2) with /(Q,2) line graph of a 2-connected hypomatchable graph
@ semi-line graphs:
clique family inequalities (Q, 2) with |Q| odd

Conjecture (Pécher & W. 2004), Theorem (Stauffer 2005)

The stable set polytope of any web W admits only the following types of facets:

@ nonnegativity constraints,

o clique constraints,

o full rank constraint x(WX) < a(WK),

o clique family inequalities (Q, k’+1) associated with proper subwebs W,f‘,/.
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Facet-defining clique family inequalities

Which clique family inequalities are essential?
o line graphs:
(Q,2) with /(Q,2) line graph of a 2-connected hypomatchable graph
@ semi-line graphs:
clique family inequalities (Q, 2) with |Q| odd

Conjecture (Pécher & W. 2004), Theorem (Stauffer 2005)

The stable set polytope of any web W admits only the following types of facets:

@ nonnegativity constraints,

o clique constraints,

o full rank constraint x(WX) < a(WK),

o clique family inequalities (Q, k’+1) associated with proper subwebs W,f‘,/.

Conjecture extended to fuzzy circular interval graphs (Pécher & W. 2006)

o if true: webs would be crucial for all rank and non-rank facets of
fuzzy circular interval graphs
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e The Chvatal-rank of clique family inequalities
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The Chvatal-rank of inequalities and polytopes

Consider a polyhedron P C R" and P; = conv{x € Z" : x € P}.

For any valid inequality > a;x; < b of P with a; € Z, the inequality
Z aix; < | b]

is a Chvatal-Gomory cut for P and valid for P;.

The set P’ of points satisfying all such Chvdtal-Gomory cuts for P is its
Chvatal-closure. Let Pt = (P!, then

PPCPCP =P

holds for every t.

Definition

@ An inequality > a;x; < b has Chvétal-rank at most t if it is valid for Pt.
@ The smallest t with Pt = P, is the Chvatal-rank of P.
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The Chvatal-rank of inequalities and polytopes

Consider a polyhedron P C R" and P; = conv{x € Z" : x € P}.

For any valid inequality > a;x; < b of P with a; € Z, the inequality
Z aix; < | b]

is a Chvatal-Gomory cut for P and valid for P;.

The set P’ of points satisfying all such Chvdtal-Gomory cuts for P is its
Chvatal-closure. Let Pt = (P!, then

PPCPCP =P

holds for every t.

Definition

@ An inequality > a;x; < b has Chvétal-rank at most t if it is valid for Pt.
@ The smallest t with Pt = P, is the Chvatal-rank of P.

Odd set inequalities and the fractional matching polytope have Chvatal-rank 1.
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Edmonds’ Conjecture

Conjecture (Edmonds 1973)
Claw-free graphs have Chvatal-rank 1.

The conjecture is true for line graphs (as odd set inequalities and, therefore,
P = QSTAB(G) for any line graph G have Chvatal-rank 1).
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Edmonds’ Conjecture

Conjecture (Edmonds 1973)
Claw-free graphs have Chvatal-rank 1.

The conjecture is true for line graphs (as odd set inequalities and, therefore,
P = QSTAB(G) for any line graph G have Chvatal-rank 1).

Counterxample (Giles & Trotter 1981, Oriolo 2003)

The fuzzy circular interval graph obtained by joining the webs W%, and WY, in a
certain way has a clique family facet (Q, 8).
This clique family inequality (Q, 8) has Chvatal-rank at least 2.

Thus, the conjecture is not true in general!
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Edmonds’ Conjecture

Conjecture (Edmonds 1973)
Claw-free graphs have Chvatal-rank 1.

The conjecture is true for line graphs (as odd set inequalities and, therefore,
P = QSTAB(G) for any line graph G have Chvatal-rank 1).

Counterxample (Giles & Trotter 1981, Oriolo 2003)

The fuzzy circular interval graph obtained by joining the webs W%, and WY, in a
certain way has a clique family facet (Q, 8).
This clique family inequality (Q, 8) has Chvatal-rank at least 2.

Thus, the conjecture is not true in general!

Problem
@ Is the conjecture true for other classes of claw-free graphs?
@ Is there an upper bound for the Chvatal-rank of quasi-line graphs?
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The Chvatal-rank of clique family inequalities

Theorem (Pécher & W. 2005)

Let (Q, p) be a clique family inequality and let r = |Q| (mod p). For every
1 <i < p—r, the inequality

iYL o xeH(i=1) Y xvgi{@J

vel(Q,p) veO(Q,p) i
has Chvétal-rank at most .
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The Chvatal-rank of clique family inequalities

Theorem (Pécher & W. 2005)

Let (Q, p) be a clique family inequality and let r = |Q| (mod p). For every
1 <i < p—r, the inequality

iYL o xeH(i=1) Y xvgi{@J
vel(Q,p) veOo(Q,p) p

has Chvdtal-rank at most i.

Remark: gives an alternative proof for the validity of clique family inequalities,
involving only standard rounding arguments.
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The Chvatal-rank of clique family inequalities

Theorem (Pécher & W. 2005)

Let (Q, p) be a clique family inequality and let r = |Q| (mod p). For every
1 <i < p—r, the inequality

iYL o xeH(i=1) Y xvgi{@J
vel(Q,p) veOo(Q,p) p

has Chvdtal-rank at most i.

Remark: gives an alternative proof for the validity of clique family inequalities,
involving only standard rounding arguments.

Corollary (Pécher & W. 2005)

@ A clique family inequality (Q, p) has Chvatal-rank at most p — r.
@ Every rank clique family inequality has Chvatal-rank 1.

Consequence: Semi-line graphs have Chvatal-rank 1, thus Edmonds’ conjecture
is true for semi-line graphs.
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Chvatal-rank of clique family inequalities: Examples

Example (Giles & Trotter 1981)

For any k > 1, the graph G¥ = WX+ x Wk has a clique family facet (Q, k + 2)
(k -+ Lx(WEH) + kx(WE) < (k+1) | |

where Q is of size n = 2k(k + 2) + 1.
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Talence, November 7+14, 2006



Chvatal-rank of clique family inequalities: Examples

Example (Giles & Trotter 1981)

For any k > 1, the graph GX = WX*! x Wk has a clique family facet (Q, k + 2)
(k -+ Lx(WEH) + kx(WE) < (k+1) | |

where Q is of size n = 2k(k + 2) + 1.

Example (Liebling, Oriolo, Spille, and Stauffer 2004)

For any a > 1, the web W(22(::32))2 has a clique family facet (Q, a + 2)

(a+ 1x(1(Q,a+2)) + ax(0(Q,2+2)) < (a+1) | 14|
where Q is of size (a+ 2)(2a + 3).

A.K. Wagler
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Chvatal-rank of clique family inequalities: Improved bound

Theorem (Pécher & W. 2005)
A clique family inequality (Q, p) with r =|Q| (mod p) has Chvétal-rank at most
min{r,p — r}

Example: The above clique family inequalities with arbitrarily high coefficients
have Chvétal-rank one as r = 1 holds in both cases.

A.K. Wagler

Talence, November 7+14, 2006



Chvatal-rank of clique family inequalities: Improved bound

Theorem (Pécher & W. 2005)
A clique family inequality (Q, p) with r =|Q| (mod p) has Chvétal-rank at most
min{r,p — r}

Example: The above clique family inequalities with arbitrarily high coefficients
have Chvétal-rank one as r = 1 holds in both cases.

Corollary (Pécher & W. 2005)

A clique family inequality (Q, p) has Chvatal-rank at most £.
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Chvatal-rank of clique family inequalities: Improved bound

Theorem (Pécher & W. 2005)
A clique family inequality (Q, p) with r =|Q| (mod p) has Chvétal-rank at most
min{r,p — r}

Example: The above clique family inequalities with arbitrarily high coefficients
have Chvétal-rank one as r = 1 holds in both cases.

Corollary (Pécher & W. 2005)

A clique family inequality (Q, p) has Chvatal-rank at most £.

Consequence:
o All facets of a web WX have Chvatal-rank at most %

@ There is no general upper bound on the Chvatal-rank, as for any k > 1, there
are clique family facets (Q, 2k + 1) with k = min{2k + 1 — k, k}.
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Chvatal-rank of clique family inequalities: Improved bound

Theorem (Pécher & W. 2005)
A clique family inequality (Q, p) with r =|Q| (mod p) has Chvétal-rank at most
min{r,p — r}

Example: The above clique family inequalities with arbitrarily high coefficients
have Chvétal-rank one as r = 1 holds in both cases.

Corollary (Pécher & W. 2005)

A clique family inequality (Q, p) has Chvatal-rank at most £.

Consequence:
o All facets of a web WX have Chvatal-rank at most %

@ There is no general upper bound on the Chvatal-rank, as for any k > 1, there
are clique family facets (Q, 2k + 1) with k = min{2k + 1 — k, k}.

Problem: Establish a lower bound on the Chvatal-rank!
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e Beyond clique family inequalities and quasi-line graphs
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Beyond clique family inequalities and quasi-line graphs

clique family inequalites ~ —————
do not suffice

——| distance c—f |<

S

=| quasi-line |<—

I3
=| /A
w

-

odd antihole

fuzzy circ.int. semi-line

[\
eb
L odd hole

line

e

A graph is distance claw-free if, for every of its nodes v, neither N(v) nor N(v)

contains a stable set of size 3.
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More complex facets for general claw-free graphs

There are claw-free graphs whose stable set polytopes admit facets neither
induced by cliques nor clique families:

Three Examples

5-wheel wedge graph Gz
X(O) + 2x(®) £ 2 X(©) + 2x(®) £ 3 X(O) + 2x(®) + 3x(®) < 4
(Q,3) with r=2yields (Q,3) with r=1 yields more than two non-zero
0 x(O) + 1x(®) £ 1 x(©) + 2x(®) = 4 coefficients required
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The graphs with stability number two

Theorem (Cook 1987)
The stable set polytope of any graph G with a(G) < 2 is entirely described by

@ trivial inequalities:
x, > 0Vv e V(G)
o clique neighborhood inequalities F(Q):
2x(Q) + 1x(N'(Q)) < 2 for all cliques Q where N'(Q) = {v: Q C N(v)}
and F(Q) is a facet iff N'(Q) has in G no bipartite component.

Q N'(Q)
maximal 0
{v} G

0 V(G)

A.K. Wagler




The graphs with stability number at least four

A connected claw-free graph G with o(G) > 4

@ is either fuzzy circular interval or can be composed from linear interval strips
(Chudnovsky & Seymour 2005)

e is quasi-line iff G does not contain a 5-wheel (Fouquet 1993)

@ has constraints associated with induced 5-wheels which can be lifted to more
general inequalities 1x(o) + 2x(e) < 2 (Stauffer 2005)
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The graphs with stability number at least four

A connected claw-free graph G with o(G) > 4

@ is either fuzzy circular interval or can be composed from linear interval strips
(Chudnovsky & Seymour 2005)

e is quasi-line iff G does not contain a 5-wheel (Fouquet 1993)

@ has constraints associated with induced 5-wheels which can be lifted to more
general inequalities 1x(o) + 2x(e) < 2 (Stauffer 2005)

Conjecture (Stauffer 2005)

The stable set polytope of a claw-free but not fuzzy circular interval graph G with
a(G) > 4 is given by

@ nonnegativity constraints

@ rank constraints

o lifted 5-wheel constraints

This would imply: all non-rank facets of a claw-free but not fuzzy circular interval
graph G with a(G) # 3 are clique neighborhood constraints!

A.K. Wagler Talence, November 7+14, 2006



The graphs with stability number three: Known Facets

Examples (Giles & Trotter 1981, Liebling et al. 2004)
wedge Giles & Trotter graph fish in a net
e

& @ @

X(O) + 2x(®) =3 X(0) + 2x(®) + 3x(®) < 4 X(O) + 2x(®) + 3x(®) + 4x(0) =5

Observation: all the known examples of complicated facets for claw-free graphs
occur in the case a(G) = 3, but they are not well-understood (so far)

A.K. Wagler Talence, November 7+14, 2006



The graphs with stability number three: Known Facets

Examples (Giles & Trotter 1981, Liebling et al. 2004)
wedge Giles & Trotter graph fish in a net
e

4T§§g?> (é§§§§§; Wﬁﬁ%
SN
\‘v;/

'f\l \
X(O) + 2x(®) =3 X(0) + 2x(®) + 3x(®) < 4 X(O) + 2x(®) + 3x(®) + 4x(0) =5

VEBN

Observation: all the known examples of complicated facets for claw-free graphs
occur in the case a(G) = 3, but they are not well-understood (so far)

Our goal: describe their structure!

A.K. Wagler Talence, November 7+14, 2006



The graphs with stability number three: Wedges

A wedge is a claw-free graph G s.t. G has
@ a unique triangle A
@ a spanning tree T with 2 or 3 spokes of appropriate length
@ additional edges (to avoid claws in G)
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The graphs with stability number three: Wedges

A wedge is a claw-free graph G s.t. G has
@ a unique triangle A
@ a spanning tree T with 2 or 3 spokes of appropriate length
@ additional edges (to avoid claws in G)

Theorem (Giles & Trotter 1981)

Every wedge induces the facet

1x(o) + 2x(e) < 3

and its roots (= tight stable sets) correspond to the following cliques of G:
o the |G| — 1 edges of the spanning tree T
@ the unique triangle A
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1. Extension: Co-spanning tree constraints

Definition

Consider a graph G with a(G) = 3. A non-rank facet a’x < b of STAB(G) is a
co-spanning tree constraint if its roots correspond to the following cliques of G:

@ the |G| — 1 edges of a spanning tree T

@ one triangle A
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1. Extension: Co-spanning tree constraints

Definition

Consider a graph G with a(G) = 3. A non-rank facet a’x < b of STAB(G) is a
co-spanning tree constraint if its roots correspond to the following cliques of G:

@ the |G| — 1 edges of a spanning tree T

@ one triangle A

Observation

o the facets of wedges are of this type
o all such facets are of the form 1x(o) + 2x(e) < 3

Thus: generalize further to obtain more than two and higher coefficients!
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2. Extension: Co-spanning forest constraints

Definition
Consider a graph G with «(G) = 3. A non-rank facet a’x < b of STAB(G) is a
co-spanning forest constraint if its roots correspond to the following cliques of G:

@ the |G| — k edges of a spanning forest F with k tree-components
@ k triangles

new example fish in a net

X(O) + 2x(®) + 3x(®) + 4x(0) £ 5

A.K. Wagler
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3. Extension: Co-spanning 1-forest constraints

Giles & Trotter graph fish in a net with bubble

x(O) + 2x(®) + 3x(®) < 4 2x(®) + 3x(®) + 4x(0) + 5x(® + 6x(® =8

Definition

Consider a graph G with a(G) = 3. A non-rank facet aTﬁg b of STAB(G) is a
co-spanning 1-forest constraint if its roots correspond in G to:

o the |G| — k edges of a spanning 1-forest F consisting of
some odd 1-trees and k trees as components

@ k triangles
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The graphs with stability number three: The Description

Theorem (Pécher, W. 2006)

If a(G) = 3, then all non-rank, non-complete join facets a’x < b are
@ co-spanning forest constraints if b is odd;
@ co-spanning 1-forest constraints if b is even.
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The graphs with stability number three: The Description

Theorem (Pécher, W. 2006)

If a(G) = 3, then all non-rank, non-complete join facets a’x < b are
@ co-spanning forest constraints if b is odd;
@ co-spanning 1-forest constraints if b is even.

Theorem (Pécher, W. 2006)

In the stable set polytope of a claw-free graph G with a(G) < 3,
every non-rank facet is a co-spanning 1-forest constraint.
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Outline

@ Some conjectures for claw-free graphs
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The types of non-rank facets for claw-free graphs

Combine the results/conjectures on non-rank facets for claw-free graphs G with
e a(G) =2 (Cook 1987)
e a(G) = 3 (Pécher, W. 2006)
e a(G) > 4 (Stauffer 2005)

Conjecture (Pécher, W. 2006)

A non-rank facet associated with a claw-free graph G is a
o clique neighborhood constraint if a(G) = 2
@ co-spanning 1-forest constraint if «(G) =3
o clique family inequality or a clique neighborhood constraint if a(G) > 4
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o clique neighborhood constraint if a(G) = 2
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4

Conjecture (Pécher, W. 2006)

A non-rank facet associated with a claw-free graph G is a

o clique family inequality if G is quasi-line,
@ co-spanning 1-forest constraint otherwise.

v
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Types of facet-defining subgraphs

Conjecture (Pécher, W. 2006)

All non-rank facets of the stable set polytope of claw-free graphs rely on
o odd antiwheels (clique neighborhood constraints),
@ co-spanning 1-forests (co-spanning 1-forest constraints),

o prime webs (clique family inequalities).

Conjecture (Pécher & W. 2006)

for non-clique facets of the stable set polytope of quasi-line graphs:

—=| quasi-line <»—‘
T

web- \M/ semi-line line graph

based % % based
facets web line rank facets
A

L w1
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