Two-Period Convex Hull Closures for Big Bucket Lot-Sizing Problems

Kerem Akartunalı

Department of Mathematics and Statistics The University of Melbourne

Joint work with

Andrew J. Miller

8 September 2009

- 4 同 2 4 日 2 4 日 2

Introduction	Methodology ೦೦೦೦೦೦೦೦೦೦೦೦೦	Computations	Basic Characteristics	Conclusions
Outline				

- Problem Definition
- Brief Review

2 Methodology

- Methodology
- Using Different Norms
- Defining Two-Period Subproblems

3 Computations

- Two-Period Problems
- Multi-Period Problems
- 4 Basic Characteristics

Introduction ●○○○○○○○	Methodology	Computations	Basic Characteristics	Conclusions
Outline				

Outline

- Problem Definition
- Brief Review

2 Methodology

- Methodology
- Using Different Norms
- Defining Two-Period Subproblems

3 Computations

- Two-Period Problems
- Multi-Period Problems
- 4 Basic Characteristics
- 5 Conclusions

Lot-Sizing: What's this about?

- "Items" to manufacture
- "Demands" to be satisfied
 - Forecasting (e.g., Peugeot)
 - Make-to-order (e.g., Airbus)
- "System limitations" such as capacities
- Decisions to be made each period
 - To produce or not to produce?
 - How much to produce?
 - How much to stock?
 - ...
 - Decision factor: Costs/revenues

向下 イヨト イヨト

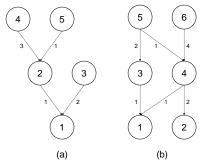
Introduction	Methodology	Computations	Basic Characteristics	Conclusions
00000000	0000000000000	000000	0000	

- Motivation for Lot-Sizing
 - \$\$\$!! Highly competitive markets for manufacturing companies
 - Significant area for cost improvement
 - Current automated systems even short of ensuring feasibility
 - Lot-Sizing problems of realistic size/complexity too difficult for MIP solvers
 - Usually no room for expectation of optimality!
 - Current polyhedral techniques usually limited to extensions of single-item techniques
 - Simply too naive to provide a thorough understanding of complicated problems
 - Question: What can we do to obtain better lower bounds?

(4回) (日) (日)

Introduction ○○○●○○○○○	Methodology ೦೦೦೦೦೦೦೦೦೦೦೦೦	Computations	Basic Characteristics	Conclusions
Problem De	escription			

- Multiple items and levels (BOM structure)
 - Assembly (a) or general (b) structures



- Demands
- Big-bucket capacities (items share resources)
- Extensions possible, e.g. overtime and backlogging
- Production plan minimizing total cost to be determined

Introduction	Methodology	Computations	Basic Characteristics	Conclusions
D				

Problem Characteristics

- Decision variables (in each time period t for each item i)
 - Production setup decisions (y_t^i)
 - Production amounts (x_t^i)
 - Inventory held (s_t^i)
- Constraints
 - Flow conservation/demand satisfaction
 - Internal/external demand
 - Capacity limits (big bucket)
 - Setup-production relations

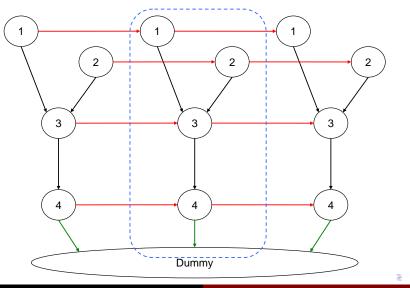
Introduction	Methodology	Computations	Basic Characteristics	Conclusions
Basic For	nulation			

$$\min \sum_{t=1}^{NT} \sum_{i=1}^{NI} f_t^i y_t^i + \sum_{t=1}^{NT} \sum_{i=1}^{NI} h_t^i s_t^i$$
(1)
s.t. $x_t^i + s_{t-1}^i - s_t^i = d_t^i$ $t \in [1, NT], i \in endp$ (2)
 $x_t^i + s_{t-1}^i - s_t^i = \sum_{j \in \delta(i)} r^{ij} x_t^j$ $t \in [1, NT], i \notin endp$ (3)

$$\sum_{i=1}^{NI} (a_k^i x_t^i + ST_k^i y_t^i) \le C_t^k$$
 $t \in [1, NT], k \in [1, NK]$ (4)
 $x_t^i \le M_t^i y_t^i$ $t \in [1, NT], i \in [1, NI]$ (5)
 $y \in \{0, 1\}^{NT \times NI}$ (6)
 $x \ge 0$ (7)
 $s \ge 0$ (8)

K. Akartunalı Big-Bucket Lot-Sizing: Two-Period Relaxations

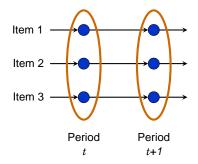
As a Fixed Charge Network



K. Akartunalı Big-Bucket Lot-Sizing: Two-Period Relaxations

Introduction ○○○○○○●○	Methodology 00000000000000	Computations	Basic Characteristics	Conclusions
What do w	ve know?			

- Many of the test problems are challenging
- We do not have an adequate approximation of the convex hull of the **multi-item**, **single-machine**, **single-level capacitated problems**! (Akartunalı and Miller [2007])



• Generalizing the "bottleneck flow" model of Atamtürk and Muñoz [2004]

Introduction Methodology Computations Basic Characteristics Conclusions The Model to Study Computations Computations Conclusions Conclusions Conclusions

$$\begin{aligned} x_{t'}^{i} &\leq \widetilde{M}_{t'}^{i} y_{t'}^{i} & i = [1, ..., NI], t' = 1, 2 \quad (9) \\ x_{t'}^{i} &\leq \widetilde{d}_{t'}^{i} y_{t'}^{i} + s^{i} & i = [1, ..., NI], t' = 1, 2 \quad (10) \\ x_{1}^{i} + x_{2}^{i} &\leq \widetilde{d}_{1}^{i} y_{1}^{i} + \widetilde{d}_{2}^{i} y_{2}^{i} + s^{i} & i = [1, ..., NI] \quad (11) \\ x_{1}^{i} + x_{2}^{i} &\leq \widetilde{d}_{1}^{i} + s^{i} & i = [1, ..., NI] \quad (12) \\ \sum_{i=1}^{NI} (a^{i} x_{t'}^{i} + ST^{i} y_{t'}^{i}) &\leq \widetilde{C}_{t'} & t' = 1, 2 \quad (13) \\ x, s &\geq 0, y \in \{0, 1\}^{2 \times NI} \quad (14) \end{aligned}$$

• Let
$$X^{2PL} = \{(x, y, s) | (9) - (14) \}$$

▲□→ ▲圖→ ▲厘→ ▲厘→

ntroduction	Methodology	Computations	Basic Characteristics	Conclusions

Outline

Introduction

- Problem Definition
- Brief Review

2 Methodology

- Methodology
- Using Different Norms
- Defining Two-Period Subproblems

3 Computations

- Two-Period Problems
- Multi-Period Problems
- 4 Basic Characteristics
- 5 Conclusions

00000000	••••••	000000	
	Relaxation:	Pacies	

- *Motivation 1:* Two-period problems are computationally easy to solve
 - Our experience from heuristic frameworks
- Motivation 2: There are recent promising results on closures
 - E.g. on MIR and Split Closures (Andersen, Cornuejols, Dash, Günlük, Lodi, ...)
- Motivation 3: 1-period problems are not strong enough
 - Miller, Nemhauser and Savelsbergh [2000], [2003]; Jans and Degraeve [2004]
- **Basic idea:** Generating cuts to separate an LPR solution over the convex hull of the two-period problems
 - *Advantage:* No need for information about the structure of two-period problems
 - *Caution:* But we want to understand the structure of two-period problems

イロト イポト イヨト イヨト

Separation Over the Two-Period Convex Hull

LPR of the original problem \Rightarrow A solution $(\tilde{x}, \tilde{y}, \tilde{s})$ L^1 (Manhattan distance) problem:

$$z^{1} = \min_{\Delta,\lambda} \sum_{i} \left[(\Delta_{s}^{-})^{i} + \sum_{t'=1}^{2} (\Delta_{x}^{+})^{i}_{t'} + (\Delta_{x}^{-})^{i}_{t'} + (\Delta_{y}^{+})^{i}_{t'} + (\Delta_{y}^{-})^{i}_{t'} \right]$$

s.t.
$$\tilde{\mathbf{x}}_{t'}^{i} = \sum_{k} \lambda_{k} (\mathbf{x}_{k})_{t'}^{i} + (\Delta_{\mathbf{x}}^{+})_{t'}^{i} - (\Delta_{\mathbf{x}}^{-})_{t'}^{i} \quad \forall i, t' = 1, 2 \quad (\alpha_{t'}^{i})$$

$$\tilde{y}_{t'}^{i} = \sum_{k} \lambda_{k} (y_{k})_{t'}^{i} + (\Delta_{y}^{+})_{t'}^{i} - (\Delta_{y}^{-})_{t'}^{i} \quad \forall i, t' = 1, 2 \quad (\beta_{t'}^{i})$$

$$\tilde{s}^i \ge \sum_k \lambda_k (s_k)^i - (\Delta_s^-)^i \qquad \forall i \qquad (\gamma^i)$$

$$\sum_{k} \lambda_k \le 1 \tag{(\eta)}$$

$$\lambda_k \geq 0, \ \Delta \geq 0$$

イロン イヨン イヨン イヨン

 Introduction
 Methodology
 Computations
 Basic Characteristics
 Conclusions

 000000000
 000000000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Separation Over the Two-Period Convex Hull (cont'd)

The dual of the L^1 problem:

$$\max_{\alpha,\beta,\gamma,\eta} \sum_{i=1}^{NI} \sum_{t'=1}^{2} (\tilde{x}_{t'}^{i} \alpha_{t'}^{i} + \tilde{y}_{t'}^{i} \beta_{t'}^{i}) + \sum_{i=1}^{NI} \tilde{s}_{k}^{i} \gamma^{i} + \eta$$
(15)
s.t.
$$\sum_{i=1}^{NI} \sum_{t'=1}^{2} ((x_{k})_{t'}^{i} \alpha_{t'}^{i} + (y_{k})_{t'}^{i} \beta_{t'}^{i}) + \sum_{i=1}^{NI} (s_{k})^{i} \gamma^{i} + \eta \leq 0 \quad \forall k$$
(16)
$$-1 \leq \alpha_{t'}^{i} \leq 1 \qquad \qquad \forall i, t' \quad (17)$$

$$-1 \leq \beta_{t'}^{i} \leq 1 \qquad \qquad \forall i, t' \quad (18)$$

$$-1 \leq \gamma^{i} \leq 0 \qquad \qquad \forall i \quad (19)$$

$$\eta \le 0$$
 (20)

- - 4 回 ト - 4 回 ト

Introduction Methodology Computations Basic Characteristics Conclusions

Separation Over the Two-Period Convex Hull (cont'd)

Theorem

Let $z^1 > 0$ for $(\tilde{x}, \tilde{y}, \tilde{s})$, and $(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\eta})$ be optimal dual values. Then,

$$\sum_{i=1}^{NI} \sum_{t'=1}^{2} (\bar{\alpha}_{t'}^{i} x_{t'}^{i} + \bar{\beta}_{t'}^{i} y_{t'}^{i}) + \sum_{i} \bar{\gamma}^{i} s^{i} + \bar{\eta} \le 0$$
(21)

is a valid inequality for $conv(X^{2PL})$ that cuts off $(\tilde{x}, \tilde{y}, \tilde{s})$.

Proof.

Validity: Using (16),
$$\bar{\gamma} \leq 0$$
 and $\lambda \geq 0$.
Violation for $(\tilde{x}, \tilde{y}, \tilde{s})$: Using (15)

Introduction Methodology Computations Basic Characteristics Conclusions

Generating Extreme Points for Separation

- How to generate (x_k, y_k, s_k) ?
 - Using column generation
 - Solve the pricing problem using the optimal $(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\eta})$:

$$\max_{\substack{x,y,s \\ x,y,s}} z_{P} = \sum_{i} \sum_{t'=1}^{2} (\bar{\alpha}_{t'}^{i} x_{t'}^{i} + \bar{\beta}_{t'}^{i} y_{t'}^{i}) + \sum_{i} \bar{\gamma}^{i} s^{i} + \bar{\eta}$$

s.t. $(x, y, s) \in X^{2PL}$

• If $z_P > 0$, then the solution is an extreme point of X^{2PL} ; otherwise, generating extreme points is done

(4月) (4日) (4日)

 Introduction
 Methodology
 Computations
 Basic Characteristics
 Conclusions

 Separation Algorithm
 Construction
 Construction
 Conclusions
 Conclusions
 Conclusions

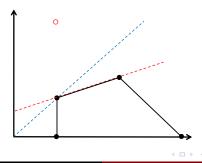
repeat Solve the distance problem for $conv(X^{2PL})$ **if** $z^1 = 0$ **then** break **else** Solve column generation problem **if** $z_P \le 0$ **then** break **else** Add new extreme point

until
$$z^1 = 0$$
 or $z_P \le 0$
if $z^1 = 0$ then $(\tilde{x}, \tilde{y}, \tilde{s}) \in conv(X^{2PL})$
else Add the violated cut (21)

Introduction	Methodology	Computations	Basic Characteristics	Conclusions
	00000000000000			

Separation Over Two-Period Convex Hull: Other Norms

- Different norms
 - \Rightarrow Different convergence
 - $\bullet \ \Rightarrow \mathsf{Different} \ \mathsf{cuts}$
- Example: $K = \{(1,0), (1,1), (2.5, 1.5), (4,0)\}, \tilde{x} = (1,3).$
 - L^1 : Distance $z_1 = 2$; cut $-x_1 + x_2 \le 0$.
 - L^{∞} : Distance $z_{\infty} = 1.5$; cut $-0.25x_1 + 0.75x_2 0.5 \le 0$.
 - L^2 : Distance $z_2 = \sqrt{3.6}$; cut $1.2x_1 3.6x_2 + 2.4 \ge 0$.



 Introduction
 Methodology
 Computations
 Basic Characteristics
 Conclusions

 000000000
 000000
 000000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000

Separation Over Two-Period Convex Hull: Other Norms

- L^{∞} almost identical
 - Still a linear model
 - Similar to L¹ problem
 - Fewer variables
 - Methodology and theory remains almost identical
- L² (Euclidean distance) trickier
 - PSD matrix ⇒ use of QP strong duality
 - Details to follow ...
 - Remark: Current QP solvers are almost as fast as LP solvers
- Combinations of different norms?
 - More on this in computational results ...

イロト イポト イヨト イヨト

 Introduction
 Methodology
 Computations
 Basic Characteristics
 Conclusions

 000000000
 000000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Separation Over Two-Period Convex Hull: Other Norms

- L^{∞} almost identical
 - Still a linear model
 - Similar to L^1 problem
 - Fewer variables
 - Methodology and theory remains almost identical
- L² (Euclidean distance) trickier
 - PSD matrix \Rightarrow use of QP strong duality
 - Details to follow ...
 - Remark: Current QP solvers are almost as fast as LP solvers
- Combinations of different norms?
 - More on this in computational results ...

Separation Over Two-Period Convex Hull: Other Norms

- L^{∞} almost identical
 - Still a linear model
 - Similar to L^1 problem
 - Fewer variables
 - Methodology and theory remains almost identical
- L² (Euclidean distance) trickier
 - PSD matrix \Rightarrow use of QP strong duality
 - Details to follow ...
 - Remark: Current QP solvers are almost as fast as LP solvers
- Combinations of different norms?
 - More on this in computational results ...

・ 同 ト ・ ヨ ト ・ ヨ ト

$$z^{2} = \min_{\Delta,\lambda} \sum_{i} \left[[(\Delta_{s})^{i}]^{2} + \sum_{t'=1}^{2} \left([(\Delta_{x})^{i}_{t'}]^{2} + [(\Delta_{y})^{i}_{t'}]^{2} \right) \right]$$

s.t.
$$\tilde{x}_{t'}^{i} = \sum_{k} \lambda_{k} (x_{k})_{t'}^{i} + (\Delta_{x})_{t'}^{i}$$
 $\forall i, t' = 1, 2$ $(\alpha_{t'}^{i})$

$$\widetilde{y}_{t'}^{i} = \sum_{k} \lambda_{k} (y_{k})_{t'}^{i} + (\Delta_{y})_{t'}^{i} \qquad \forall i, t' = 1, 2 \qquad (\beta_{t'}^{i})$$

$$ilde{s}^i \geq \sum_k \lambda_k (s_k)^i - (\Delta_s)^i \qquad \forall i \qquad (\gamma^i)$$

$$\sum_{k} \lambda_k \le 1 \tag{(\eta)}$$

$$\lambda_k \geq 0, \; \Delta_s \geq 0, \; \Delta_x, \Delta_y \; {\sf free}$$

< 口 > < 回 > < 回 > < 回 > < 回 > <

Э

Using Euclidean Distance: Dual

$$\begin{split} z_{D} &= \max_{\Delta,\alpha,\beta,\gamma} - \sum_{i} \left[[(\Delta_{s})^{i}]^{2} + \sum_{t'=1}^{2} [(\Delta_{x})_{t'}^{i}]^{2} + [(\Delta_{y})_{t'}^{i}]^{2} \right] \\ &- \left(\sum_{i=1}^{NI} \sum_{t'=1}^{2} (\tilde{x}_{t'}^{i} \alpha_{t'}^{i} + \tilde{y}_{t'}^{i} \beta_{t'}^{i}) + \sum_{i=1}^{NI} \tilde{s}^{i} \gamma^{i} + \eta \right) \\ \text{s.t.} \quad \sum_{i=1}^{NI} \sum_{t'=1}^{2} ((x_{k})_{t'}^{i} \alpha_{t'}^{i} + (y_{k})_{t'}^{i} \beta_{t'}^{i}) + \sum_{i=1}^{NI} (s_{k})^{i} \gamma^{i} + \eta \ge 0 \quad \forall k \\ &\alpha_{t'}^{i} = -2(\Delta_{x})_{t'}^{i} \qquad \forall i, t' \\ &\beta_{t'}^{i} = -2(\Delta_{y})_{t'}^{i} \qquad \forall i, t' \\ &-\gamma^{i} \ge -2(\Delta_{s})^{i} \qquad \forall i \\ &\gamma \ge 0, \ \eta \ge 0, \ \Delta_{s} \ge 0, \ \alpha, \beta, \Delta_{x}, \Delta_{y} \text{ free} \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

Э

Using Euclidean Distance: Theory

Theorem

Let $z^2 > 0$ for $(\tilde{x}, \tilde{y}, \tilde{s})$, with optimal primal values $(\bar{\Delta}_x, \bar{\Delta}_y, \bar{\Delta}_s, \bar{\lambda})$, and $(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\eta})$ be the associated optimal dual values. Then,

$$\sum_{i} \sum_{t'=1}^{2} (\bar{\alpha}_{t'}^{i} x_{t'}^{i} + \bar{\beta}_{t'}^{i} y_{t'}^{i}) + \sum_{i} \bar{\gamma}^{i} s^{i} + \bar{\eta} \ge 0$$
(22)

is a valid inequality for $conv(X^{2PL})$ that cuts off $(\tilde{x}, \tilde{y}, \tilde{s})$.

Proof.

Using a similar approach to the previous proof and also using the strong duality theorem for QP.

マロト イヨト イヨト

Introduction Methodology Computations Basic Characteristics Conclusions

Defining Two-Period Subproblems

- Question 1: On which two periods to run the separation?
 - We can look at all the two-period problems (NT 1 of them)
- Question 2: Which period's stock is represented by $s^{i?}$
 - Let $\phi(i) \in [t + 1, .., NT]$ be the horizon parameter for each i
 - Obvious choice: t + 1, i.e., $s^i = s^i_{t+1}$
 - Then, parameters are defined as follows ($\forall i, t' = 1, 2$):

•
$$\widetilde{M}_{t'}^{i} = M_{t+t'-1}^{i}$$
, $\widetilde{C}_{t'}^{i} = C_{t+t'-1}^{i}$
• $\widetilde{d}_{t'}^{i} = d_{t+t'-1, t+1}^{i}$, i.e., $\widetilde{d}_{1}^{i} = d_{12}^{i}$ and $\widetilde{d}_{2}^{i} = d_{2}^{i}$.

- Observation 1: If a number of periods following *t* + 1 have no setups, their demands should be incorporated
- Observation 2: If a setup occurs after t + 1, (l, S) inequalities will be weakened if that period's demand is in

 Introduction
 Methodology
 Computations
 Basic Characteristics
 Conclusions

 000000000
 000000000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 <

Two-Period Convex Hull Closure Framework

• Following Miller, Nemhauser, Savelsbergh (2000)

$$\phi(i) = \max\{t' | t' \ge t+1, \sum_{t''=t+1}^{t'} y_{t''}^i \le y_{t+1}^i + \Theta\}$$

where $\Theta \in (0,1]$ is a random number

• Let X_t^{2PL} be $X_t^{2PL}(\phi(1), \phi(2), ..., \phi(NI))$

Solve LPR of the original problem $\rightarrow (\tilde{x}, \tilde{y}, \tilde{s})$ for t=1 to NT-1 Define X_t^{2PL} Apply two-period convex hull separation algorithm

(4 回) (4 回) (4 回)

Introduction	Methodology ೦೦೦೦೦೦೦೦೦೦೦೦೦	Computations	Basic Characteristics	Conclusions
Outline				

- Problem Definition
- Brief Review

2 Methodology

- Methodology
- Using Different Norms
- Defining Two-Period Subproblems

3 Computations

- Two-Period Problems
- Multi-Period Problems
- 4 Basic Characteristics

5 Conclusions

Computational Results: Two-Period Problems

- 2PCLS instances: 20 problems with two periods only and with two to six items
 - cdd might provide the full description of the convex hull
 - Generate all the extreme points and rays of the LPR
 - Eliminate all the fractional extreme points
 - Using these integral extreme points, generate all the facets of the integral polyhedron
 - The more items share a resource, the more the structure tends to resemble that of an uncapacitated problem
- The separation algorithm implemented in Mosel (Mosel version 2.4.0, Xpress 2008A package)
- XLP based on a strong formulation using all violated (ℓ, S) inequalities (Barany et al. [1984])

 Introduction
 Methodology
 Computations
 Basic Characteristics

 000000000
 00000000000
 0000
 0000

Computational Results: Two-Period Problems (cont'd)

Instance	NI	XLP	IP	$\# \text{ cuts}$ (L^1)	$\# \operatorname{cuts}(L^\infty)$	$\# \text{ cuts}$ (L^2)
2pcls01	3	17.033	25	11	8	17
2pcls02	3	12.6253	19	13	7	7
2pcls03	3	76.5345	104	5	3	1
2pcls04	2	14.7674	19	4	2	1
2pcls05	3	38.39	52	8	6	4
2pcls06	3	117.375	173	5	6	5
2pcls07	2	36.5	43	2	1	1
2pcls08	2	21.45	26	7	2	2
2pcls09	2	129	153	2	3	3
2pcls10	3	17.6539	24	1	3	1

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Э

 Introduction
 Methodology
 Computations
 Basic Characteristics

 000000000
 0000000000
 0000
 0000

Conclusions

Computational Results: Two-Period Problems (cont'd)

Instance	NI	XLP	IP	$\# \text{ cuts}$ (L^1)	$\# cuts$ (L^{∞})	$\# \text{ cuts}$ (L^2)
2pcls11	3	71.7209	102	4	1	1
2pcls12	3	46.68	69	4	1	2
2pcls13	4	85.6256	113	7	7	9
2pcls14	4	70.2961	81	6	8	5
2pcls15	4	54.1848	74	6	3	1
2pcls16	4	34.0844	39	6	7	4
2pcls17	5	164.858	211	39	19	14
2pcls18	5	57.0825	97	34	10	6
2pcls19	6	115.131	150	11	6	1
2pcls20	6	59.2412	89	34	11	5

・ロ・ ・ 日・ ・ 日・ ・ 日・

Э

Introduction	Methodology ೦೦೦೦೦೦೦೦೦೦೦೦	Computations	Basic Characteristics	Conclusions
<u> </u>		т р ·		

Computational Results: Two-Period Problems (cont'd)

-

_

-

Instance	L^{∞}			L ²
	# cuts	# cols/ite	# cuts	# cols/ite
2pcls01	8	41.44	17	27.06
2pcls02	7	43.88	7	24.38
2pcls03	3	26.25	1	14
2pcls04	2	10	1	25
2pcls05	6	43.14	4	20.8
2pcls06	6	43.71	5	20.17
2pcls07	1	15	1	7
2pcls08	2	17.67	2	8.67
2pcls09	3	19.5	3	8.75
2pcls10	3	27.5	1	14
2pcls13	7	72.75	9	35.27
2pcls17	19	135.35	14	63.73
2pcls20	11	137.83	5	64.5
			∢ □	

K. Akartunalı Big-Bucket Lot-Sizing: Two-Period Relaxations

æ

	Computations	Basic Characteristics	Conclusions

Computational Results: Multi-Period Problems

tr6-15 detailed results (30 iterations):

	L ¹			L^2		
	lim=100	lim=150	lir	n=100	lim=150	lim=150
	$\phi(i)$	$\phi(i)$		t+1	t+1	$\phi(i)$
2PL	37,234.6	37,298.8	37	7,306.7	37,306.8	37,331.2

Trigeiro instances results:

	tr6-15	tr6-30	tr12-15	tr12-30
XLP	37,201	60,946	73,848	130,177
2PL	37,364	61,096	73,962	130,350
OPT	37,721	61,746	74,634	130,596
Gap closed	31.35%	18.75%	14.50%	41.29%

 Introduction
 Methodology
 Computations
 Basic Characteristics
 Conclusions

 Computational Results:
 Multi-Period
 Problems (cont'd)

TDS instances preliminary results with L^{∞} approach:

	BK511131	BK511141	BK521131	BK521142
XLP	92,602	125,307	92,350	124,988
2PL	117,540	148,936	115,071	139,118
Best Sol.	120,303	162,629	118,217	153,805
Gap was	29.91%	29.78%	28.01%	23.06%
Gap now	2.35%	9.19%	2.73%	10.56%
	BK512131	BK512132	BK521132	BK522142
XLP	BK512131 90,733	BK512132 90,814	BK521132 94,257	BK522142 119,559
XLP 2PL				
	90,733	90,814	94,257	119,559
2PL	90,733 110,125	90,814 110,546	94,257 114,676	119,559 133,461

イロン 不同と 不同と 不同と

Introduction	Methodology ೦೦೦೦೦೦೦೦೦೦೦೦೦	Computations	Basic Characteristics ●೦೦೦	Conclusions
Outline				

Introduction

- Problem Definition
- Brief Review

2 Methodology

- Methodology
- Using Different Norms
- Defining Two-Period Subproblems

3 Computations

- Two-Period Problems
- Multi-Period Problems
- 4 Basic Characteristics

Conclusions

Introduction Methodology Computations Basic Characteristics Conclusions

Two-Period Model: Assumptions

- This section is far from complete!
- Assumptions:

•
$$0 < \widetilde{M}_t^i, \forall t \in \{1, \dots, NT\}, \forall i \in \{1, \dots, NI\}$$

• Otherwise
$$x_t^i = 0$$

•
$$ST^i < \widetilde{C}_t, \forall t \in \{1, \dots, NT\}, \forall i \in \{1, \dots, NI\}$$

• Otherwise
$$y_t^i = 0, x_t^i = 0$$

Proposition

 $conv(X^{2PL})$ is full-dimensional.

(人間) (人) (人) (人)

Conclusions

Two-Period Model: Trivial Facets

Proposition

The following inequalities are facet-defining for $conv(X^{2PL})$:

$$\begin{array}{l} \bullet \quad x_t^i \geq 0, \ t \in \{1, 2\}, i \in \{1, \dots, NI\} \\ \bullet \quad y_t^i \leq 1, \ t \in \{1, 2\}, i \in \{1, \dots, NI\} \ \text{if } ST^{i'} < \widetilde{C}_t - ST^i \\ \forall i' \in \{1, \dots, NI\} \backslash \{i\} \\ \bullet \quad x_t^i \leq \widetilde{d}_t^i y_t^i + s^i \ , \ t \in \{1, 2\}, i \in \{1, \dots, NI\} \ \text{if } a^i \widetilde{d}_t^i + ST^i \leq \widetilde{C}_t \end{array}$$

- 4 同 6 4 日 6 4 日 6

Introduction Methodology Computations Basic Characteristics Conclusions

Two-Period Model: Less-Trivial Facets

- More to discover still in progress
 - Usual suspects: Inequalities based on covers (Padberg et al. (1984), Goemans (1989), Miller et al. (2002), Atamtürk and Muñoz (2004), ...)

Proposition

I

$$x_1^i + x_2^i \leq \widetilde{d}_1^i y_1^i + \widetilde{d}_2^i + s^i, \forall i \in \{1, \dots, NI\}$$

is facet-defining if $a^i \widetilde{d}_t^i + ST^i < \widetilde{C}_t \ \forall t \in \{1, 2\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Methodology 00000000000000	Computations	Basic Characteristics	Conclusions
Outline				

Introduction

- Problem Definition
- Brief Review

2 Methodology

- Methodology
- Using Different Norms
- Defining Two-Period Subproblems

3 Computations

- Two-Period Problems
- Multi-Period Problems
- 4 Basic Characteristics

Introduction	Methodology ೦೦೦೦೦೦೦೦೦೦೦೦೦	Computations	Basic Characteristics	Conclusions
Conclusion	IS			

- Study of a stronger relaxation
 - A new framework independent from defining families of valid inequalities or reformulations a priori, although expected output is to define new valid inequalities using the results from the framework
 - To our knowledge, this is an original approach in lot-sizing literature
- Different norms useful to generate cuts and improve lower bounds significantly
 - Euclidean and L^∞ approaches computationally much more efficient than Manhattan approach
 - Observed both on the efficiency of cuts and on the number of extreme points generated in column generation before termination

Introduction	Methodology ೦೦೦೦೦೦೦೦೦೦೦೦೦	Computations	Basic Characteristics	Conclusions

Ongoing Work

- Completing computational results on realistic size problems
 - Resolve computational issues
- Polyhedral analysis of the two-period relaxation
 - Careful analysis of the inequalities generated by the framework and the facets from **cdd**
 - Significant potential to identify new families of valid inequalities

・ 同 ト ・ ヨ ト ・ ヨ ト